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Chapter 1

Introduction

Optimization problems appears in several fields. In the transport engineering area,
we can mention, for example, traffic signalling management, bus scheduling, traffic
counting location and vehicle routing. Many optimization techniques have been
developed to solve these problems, but there is room to improve the results found
so far given the difficulty of these problems.

This thesis solves three hard problems: the Traffic Counting Location Problem
(TCLP), the Periodic Supply Vessel Planning Problem (PSVPP) and the Hetero-
geneous Site-Dependent Multi-depot Multi-trip Periodic Vehicle Routing Problem
(HSDMDMTPVRP). Each one is presented in the next sections which also show
our contributions.

1.1 Traffic counting location problem

The strong Brazilian economic growth registered in recent decades has promoted
an increase in the demand for products and services all over the country. This has
direct influence on the number of passengers and the quantity of cargo transported
on national highways, since the road is the most used mode of transportation in
Brazil.

An efficient road transportation system is essential for the development of a
country, since it is necessary to ensure the circulation of people and goods throughout
the territory safely and efficiently. In Brazil, investments on road infrastructure are
even more relevant, since this mode is responsible for 96% of passenger and 62% of
freight transportation [3].

According to GOMES [4], these investments are very important to provide se-
curity and reduction of travel times and operational costs. In this sense, studies
regarding the traffic, flows, and their temporal variation in road networks are essen-
tial.
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Several counting methods can be used to monitor traffic flows on highways, which
tend to be costly mainly because they usually require a skilled workforce. Traffic
sensors, that count the number of vehicles passing by a given point over a predefined
period of time, tend to be more affordable options, making them often used in
traffic monitoring [5]. These devices provide data to support traffic management
applications, such as traffic control, semaphore, ramp control, incident detection
and vehicle classification [6, 7].

The Traffic Counting Location Problem (TCLP) aims to locate optimally traf-
fic sensors (stations) with a given objective and sets of constraints. As reported
by GENTILI and MIRCHANDANI [8], these sensors are usually grouped into four
categories - traffic counting, route, image, and vehicle identification, and the most
commonly used is the first one. If a traffic sensor is located on a road, it measures
the volume of vehicles on it, on the other hand, if it is located on a network node,
it measures the flows of all incoming and outgoing roads connected to this node.

A good traffic monitoring system must receive information from the entire net-
work of interest. In this context, TCLP arises, aiming to find the best number and
location of counting stations to cover a road network in order to obtain its traf-
fic flows. Finding the best location for the sensors is important to reduce costs of
deployment, maintenance and operation of the traffic stations.

The TCLP considers a network which has a set of roads and a set of nodes.
The set of nodes is divided into two sets: the origin and destination (O-D) nodes
and the network intersections. When travelling between cities, for example, trips
are performed from origins to destinations throughout the roads, passing by the
network intersections. In this case, there are frequently different paths connecting
an O-D pair which can be used by the drivers. So, the TCLP has to define the set
of roads to receive counting stations to intercept (or cover) all paths between the
O-D pairs.

We propose a progressive hybrid algorithm based on exact, heuristic and hybrid
approaches embedded on a set covering framework to solve the TCLP. We have
used 26 real-world instances obtained from the Brazilian georeferenced state road
networks, containing information about all O-D pairs (Brazilian municipalities).
The entire network was provided by the National Department of Transport Infras-
tructure (DNIT), that is responsible for implementing the National Traffic Counting
Plan (NTCP). The NTCP aims to obtain the traffic flows for the actual network
having more than 50,000 km and connecting approximately 5,600 municipalities.
Our approach solved 84% of the instances optimally, and for three ones it found
best-known solutions.
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1.2 Fleet composition and periodic routing problem

of offshore supply vessels with berth allocation

decisions

The periodic supply vessel planning problem (PSVPP) arising in the upstream off-
shore petroleum logistics chain of oil and gas exploration and production. The
PSVPP variant tackled in this work models a real-life problem faced by a Brazilian
oil and gas exploration and production (E&P) operator.

As described in GRIBKOVSKAIA et al. [9] and in AAS et al. [10], the PSVPP is
a key problem in this context since it ensures the regular replenishment of equipment
and other supplies to offshore units, as well as the return of waste and depleted
equipment back to the onshore base. This is usually a high-cost operation, essential
to avoid interruptions in the continuous production of oil.

We consider (i) the simultaneous determination of the heterogeneous fleet com-
position, the vessel schedules and the berth allocations; (ii) continuous and flexible
departures from the base; (iii) historical data to model the berth allocations and
departures; and (iv) the solution for the largest real-world offshore instances ever
presented, with up to 79 installations.

The periodic supply vessel planning problem with berth allocations is defined
according to the description provided by a Brazilian oil and gas operator, and uni-
fies the characteristics described in CRUZ et al. [2], KISIALIOU et al. [11], and
HALVORSEN-WEARE and FAGERHOLT [12]:

• Non-stop operations : No opening hours are considered for either the onshore
base or the offshore unit. The onshore base, the offshore units and the vessels
operate continuously, seven days a week, without any interruption, and no
time windows are considered at the offshore units.

• Periodic service: Each offshore unit has its frequency of service, commonly
called “frequency of visits”, depending mainly on its own demand, which is
limited by the required deck area. The production units have a more stable
demand, implying a lower frequency of service, typically once or twice a week.
In the case of drilling rigs, the demand is more unpredictable, implying a
higher frequency of service, typically three or more times per week.

• Spread departures from the base: The frequency of attendance to each maritime
unit is linked to the vessel departures. In fact, the departures from the onshore
base to each offshore unit should be spread as evenly as possible over the
planning horizon in order to avoid delays in meeting the delivery requests
from the installations. This characteristic and “Periodic service” are satisfied
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through the service frequency patterns (mentioned before), creating what we
call delivery patterns.

• Heterogeneous and common resource fleet : Each type of vessel has its own
deck capacity, a fixed cost over the planning horizon, and a variable cost per
travelled distance. In addition, the vessels are not associated to routes, but
are considered a common resource to be used whenever requested and with
the objective of reducing costs.

• Route duration: The vessel capacity limits the maximum number of offshore
units that can be visited on the same route, and longer routes are more subject
to delays and adverse weather conditions. Hence, the maximum number of
installations serviced in the same route cannot exceed eight. As a result, the
time required for the routes vary between one and four days, approximately.

• Two daily berth departures : The loading times at the onshore base are cal-
culated by considering a fixed setup time (vessel berthing time) added to the
variable loading time, which is proportional to the voyage’s total demand.
The maximum number of departures from each berth on each day is limited
to two, based on the actual loading rates and on the historical average amount
of cargo transported. Therefore, there is one physical berth position that has
to be shared for a maximum of two unloading/loading operations, and each
departure from each berth’s queue position is called a departing position.

• Berth departures’ tolerance: In order to bring flexibility to the berth planning
process, a vessel can begin the loading process on a day and finish it on the next
day, given a tolerance of up to 12 hours to leave the onshore base. The inclusion
of this flexibility in hours on the departure day in the model is important to
deal with cases where the port is overloaded.

• Static routing : All parameters are known in advance, so no stochastic data
are used and the weather impact on the voyage duration is not considered.

In short, the PSVPP tackled here consists of solving a periodic vehicle routing
problem by simultaneously determining the optimal fleet size and mix of heteroge-
neous offshore supply vessels, their weekly routes and schedules for servicing the
offshore oil and gas installations, as well as the berth allocations (BA) at the supply
base. Hence we will call this problem the PSVPP-BA.

We present a branch-and-cut algorithm and an adaptive large neighborhood
search (ALNS) heuristic with multiple starts and spaced local searches to solve this
PSVPP. We also use a replicable one-week planning horizon both for the offshore
units and the vessels, and solve the largest available benchmark instances without
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dividing them into clusters. These algorithms were tested on instances with up to
79 offshore units, providing better results than the best available.

1.3 Heterogeneous Site Dependent Multi depot

Multi trip Periodic Vehicle Routing Problem

Vehicle routing has great importance in the literature and has been widely studied
due to its relevance to industry and economy. Such study began with the Vehicle
Routing Problem (VRP) proposed by DANTZIG and RAMSER [13] where vehicles
with the same characteristics leave a distribution center (or warehouse) and deliver
or pickup goods at specific locations (which may be customers or suppliers) at the
lowest possible cost. The cost in this case is basically associated with the distance
traveled.

Although this problem has been studied for almost six decades [14], real appli-
cations remain a challenge. They feature a variety of operational attributes that
complicate the problem and may have a significant impact on the solution process.
These additional considerations may, for example, affect vehicles costs and capaci-
ties, customers constraints and multiple depot operations.

In this work, we study a real VRP variant for a major automotive company in
Brazil that makes around 300 weekly services. This version of the problem addresses
the following considerations:

• Clients: They are geographically dispersed with predetermined positions to
define the routes;

• Periodic non-symmetric demands : Each client can have individual demands,
with individual frequencies as well;

• Heterogeneous fleet : There are different types of vehicles, with different capac-
ities and costs that can be used to perform the services (pickups or deliveries).
In this problem, larger vehicles lead to larger usage costs (KOÇ et al. [15]).
The problem faced has distribution centers, sizing its fleets to service the de-
mands;

• Working day of the field teams : The service must respect time windows for
customers and distribution center, and there is a maximum number of hours
for a driver work daily;

• Docking constraints : Each client can be served by certain types of vehicles;

• Multiple depots : Each vehicle route starts and ends at the same depot;
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• Multiple trips of each vehicle per day : A vehicle may leave the distribution
center, perform all pickups, and return to the starting point in a period of
time shorter than its useful working time. Consequently this vehicle is able to
perform a new trip; and

• Periodic scheduling : The scheduling of the routes should be done for a certain
planning horizon which is about one week.

We adapted and implemented the current state-of-the-art algorithm for most of
the VRP sub-problems presented in the HSDMDMTPVRP called Unified Hybrid
Genetic Search (UHGS) [16] with an advanced diversity control, feasibility control
and a restart mechanism.

In addition, we also present a new metaheuristic called Adaptive Variable Neigh-
borhood Race (AVNR) which combines successful strategies in the literature: vari-
able neighborhood search and adaptive mechanisms integrated with a shrinking pop-
ulation managed with a diversity mechanism. This metaheuristic was tested with
well-known instances of the literature for all VRP sub-problems presented in the
HSDMDMTPVRP and the results were compared against the best-know methods
developed to solve each one.

Both approaches were tested in the same computer with the same execution time,
with shared code and different set of parameters. The computational experiments
considered 398 instances available in the literature. Our metaheuristic found 143 new
best-known solutions and 205 of the best-known ones. For the remaining instances,
it found results very close to best ones known.

1.4 Thesis structure

The following chapters are dedicated to each one of the transportation related op-
timization problems: TCLP (Chapter 2), PSVPP-BA (Chapter 3) and the HSD-
MDMTPVRP (Chapter 4).

More specifically, in Chapter 2, Section 2.1 surveys the related TCLP literature
and Section 2.2 introduces the mathematical formulation used in this to represent
the TCLP. The solution approach is presented in Section 2.3. Instances and com-
putational results are presented in Section 2.4, which also shows a comparison with
the literature. At last, Section 2.5 gives the final remarks of the chapter.

In Chapter 3, Section 3.1 surveys the related PSVPP-BA literature and Sec-
tion 3.2 presents the mathematical modelling. Section 3.3 describes the branch-
and-cut algorithm, Section 3.4 presents the ALNS heuristic and Section 3.5 details
the computational experiments. Section 3.6 presents the final remarks of the chap-
ter.
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In Chapter 4, Section 4.1 overviews the related VRP literature and Section
4.2 presents the mathematical problem description for the HSDMDMTPVRP. The
shared search mechanisms are described and than the proposed metaheuristics are
detailed in Section 4.3, followed by computational experiments in Section 4.4. And
Section 4.5 give the final remarks of the chapter.

Finally, Chapter 5 presents the conclusions, achievements and suggestions for
future researches.
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Chapter 2

A progressive hybrid algorithm set
covering based for the traffic
counting location problem

This chapter approaches the traffic counting location problem (TCLP). We propose
a unicost set covering formulation based on the well-known formulations of YANG
et al. [17]. A set covering based progressive hybrid algorithm is developed to
test the performance of this model over a set of 26 real-world instances derived
from the Brazilian roads. The obtained results are compared to the ones found
by GONZÁLEZ et al. [1].

The proposed algorithm presented in this chapter was published in VIEIRA et al.
[18].

2.1 Literature review

The Traffic Counting Location Problem (TCLP) is one of the Flow Capturing
problems introduced by HODGSON [19], including some facility location problems,
surveillance systems, and data network observation. There are three types of flow
capturing problems over road networks: (i) those in which the facility to be located
is desired by the driver, like gas stations or convenience stores, and the driver may
take a longer path in order to achieve it, as can be seen in KIM and KUBY [20];
(ii) those in which the item to be located is avoided by the driver, like speed radars
or toll booths, as recently investigated by ARSLAN et al. [21]; and (iii) those in
which the driver does not care about the item to be located, like billboards or traffic
counting sensors for traffic monitoring. The TCLP fits exactly in this last category
of flow capturing problems, in which the driver does not care about the sensors to
be located.
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Traffic monitoring studies date back to FISK [22], and they are important for
several transportation studies, for example, to find critical roads, determine average
annual daily traffic, forecast future travel demand, and manage transport and con-
trol. It is also useful to estimate Origin-Destination (O-D) trip tables (or O-D trip
matrices), which can condense significant information.

According to MOHAMAD et al. [23], traffic monitoring involves the collection of
many types of data, such as vehicle speeds, vehicle weights, traffic volume, and traffic
composition. As claimed by ZHONG et al. [24], highway agencies have developed
traffic monitoring programs to obtain traffic data to be used in planning, design,
control, operation, and management of traffic and highway facilities.

O-D matrices specify the number of trips between each pair of origin and des-
tination nodes on a network. These matrices are important for various analyses
in transportation planning and operations [8, 25]. The quality of estimated O-D
matrices depends strongly on the quality of collected data from sensors, which is
directly impacted by the number and the locations of traffic counting points [26].

The concept of Maximum Possible Relative Error (MPRE), based on a quadratic
programming formulation, was introduced by YANG et al. [27] to investigate the
reliability of estimated O-D trip matrices, resulting in a useful index for evaluating
the estimation accuracy of these matrices.

A comprehensive research about traffic counting locations was conducted
by YANG and ZHOU [28] to effectively estimate the O-D trip matrices from traffic
counts. Based on the MPRE concept of YANG et al. [27], they derived four rules
to locate traffic counting stations (O-D covering rule, maximal flow fraction rule,
maximal flow-intercepting rule and link independence rule), and proposed integer
linear programming models and heuristic algorithms to determine the counting links
satisfying these rules, which were incorporated as constraints.

Screen-line based TCLP models were introduced by YANG et al. [29] to opti-
mally select traffic counting stations in a road network. They were based on the
O-D separation rule, without needing explicit references to existing O-D flows and
turning proportions at each node, or behavioral assumptions of link/route choice
proportions. They developed integer programming models and a genetic algorithm
(GA) to solve two screen-line based TCLP: the location of a given number of count-
ing stations to separate as many O-D pairs as possible, and the minimal number
and locations of counting stations required to separate all O-D pairs.

A bi-objective model for locating traffic counting stations to estimate O-D matri-
ces was proposed by CHOOTINAN et al. [30]. The two objectives explicitly consider
the trade-off between the quality (maximization of the number of O-D being sepa-
rated) and cost (minimization of the number of traffic counting stations used). They
developed weighted-sum and distance-based genetic algorithms to generate an ap-
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proximate set of non-dominated solutions. The distance-based GA performed better,
and the numerical results indicated that, through this method, decision makers can
examine the trade-off between the quality and the cost of the generated coverings, in
order to make a proper selection without the need to repeatedly solve the maximal
covering problem with different levels of resource.

In YANG et al. [17], the screen-line based TCLP models introduced by YANG
et al. [29] were reformulated as integer linear programming problems. They devel-
oped a shortest path based column generation procedure to find optimal screen-line
counting location solutions.

New strategies for selecting additional traffic counts, based on the screen-line
TCLP models proposed by YANG et al. [17, 29], were introduced by CHEN et al.
[31]. A GA embedded with a shortest path algorithm was developed in order to
avoid the need to enumerate paths when solving the integer programs for large-
scale network applications. They set up a real-world georeferenced experiment in
order to visually observe the evolution of O-D estimation as the number of traffic
counting locations increases, identifying various spatial properties of O-D trip tables
estimated from traffic counts of different locations as results of their study.

Recently, GONZÁLEZ et al. [1] proposed a branch-and-cut algorithm and a
clustering search (CS) heuristic to solve the TCLP. They also presented new real-
world benchmark instances based on data from the Brazilian road network, which
were used to compare the performance of their methods with the state-of-the-art
GA algorithm developed by CHEN et al. [31]. By means of statistical significance
analyses, they stated that their CS heuristic outperformed GA in all aspects.

The TCLP can be seen as a set covering problem where road segments with
sensors cover a set of paths that connect O-D pairs. So, new exact, heuristic and
hybrid techniques are proposed to solve the TCLP as presented in the next sections.

2.2 Mathematical formulation for the TCLP

Let G = (N,A) be a road network, where A is the set of roads (bidirectional links)
and N = T

⋃
I is the set of nodes. The O-D nodes are represented by set T , while

set I indicates all network intersections. The set W = {(i, j)|i ∈ T, j ∈ T, i 6= j}
represent the O-D pairs. For each w = (i, j) ∈ W , the set P =

⋃
w∈W Pw denotes

all paths Pw between origin i ∈ T and destination j ∈ T .
To better understand this notation, Figure 2.1 illustrates a small road network

G = (N,A) composed by |A| = 13 links, and |N | = 9 nodes, where T = {A,B,D}
represents O-D points, and the remaining |I| = 6 nodes denote intersection nodes.

The O-D pairs are represented in Figure 2.1 by W = {(A,B), (A,D), (B,D)},
and there are several paths connecting them. For example, paths (1, 4, 6, 7) and
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Figure 2.1: Hypothetical road network.

(2, 10, 9) connect origin A to destinationD, consequently they belong to set Pw=(A,D).
The integer programming (IP) formulations introduced by YANG et al. [17]

both decide the minimal number of traffic count stations and its locations on a road
network G, so that they intercept all paths between O-D pairs. These are the most
used formulations until nowadays, nonetheless they have a huge number of columns,
and precisely for that reason, column generation approaches must be used. In order
to avoid that, we decided to adopt a formulation based on the set covering problem.

Let xa ∈ {0, 1} be a binary variable indicating whether a traffic station should
be located on road a (xa = 1), or not (xa = 0), and let δwpa ∈ {0, 1}, w ∈ W,a ∈
A, p ∈ Pw be a binary parameter specifying if link a is on path p connecting O-D
pair w (δwpa = 1), or not (δwpa = 0). Consequently, the mathematical formulation
used in this work is presented below [17].

Minimize z =
∑
a∈A

xa (2.1)

Subject to:∑
a∈A

δwpaxa ≥ 1 ∀w ∈ W, p ∈ Pw (2.2)

xa ∈ {0, 1} ∀a ∈ A (2.3)

The Objective Function (2.1) aims to minimize the number of traffic counting
stations required to separate all O-D pairs in the network. Constraints (2.2) ensure
that every O-D pair is separated by at least one counting station (selected link).
Finally, Constraints (2.3) define the domain of the decision variables.

The mathematical formulation (2.1)-(2.3) can also represent the Unicost Set
Covering Problem (USCP), since the covering cost is the same for each set. In
this problem, the sets are composed by the paths between O-D pairs w ∈ W , and
each link a ∈ A is a node to be selected. As stated by YELBAY et al. [32], unicost
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problems are generally assumed to be more challenging in regard to their non-unicost
counterparts. In fact, due to their intrinsic symmetry, the size of their restricted IP
is used to be identical to the size of the original problem in dual approaches.

One notable characteristic of the TCLP formulation (2.1)-(2.3) is that it has
a huge number of rows (paths), but a much smaller number of columns (links).
This drove our approach to solve the problem, since the giant number of paths
turns prohibitive to enumerate all of them efficiently in reasonable computational
time [17, 29].

2.3 Set covering solution approach

This section details our approach to solve the TCLP. Differently from GONZÁLEZ
et al. [1], that apply a branch-and-cut algorithm over Constraints (2.2) to separate
the O-D pairs, we propose a framework, described in Algorithm 1, to solve the TCLP
by solving an USCP multiple times.

Algorithm 1 successively applies two phases for solving the TCLP: a Covering
phase (Line 4), to solve the USCP; and a Cut phase (Line 6), which tries to find
paths between O-D pairs bypassing traffic count stations. The algorithm ends when
these paths can no longer be found. After the Covering phase, a Cleaning procedure
is applied to remove possible redundant links.

Algorithm 1: Set Covering Framework - SCF
Data: Network G, set of O-D pairs W , initial set of paths P1, Covering

method, Cleaning method, spread criterion SpreadCrit, time limit
per cover TL1 and time limit total TL2

Result: A set C of links to receive traffic counting stations (sensors).
1 P2 ← ∅;
2 repeat
3 P1 ← P1 ∪ P2;
4 C ← Covering(P1,min(TL1, TL2 − Time));
5 C ← Cleaning(C,P1);
6 P2 ← Cut(G,C, SpreadCrit);
7 until |P2| = ∅ or Time ≥ TL2;
8 if |P2| 6= ∅ then C ← A;

It has as input: a network G, its set W of O-D pairs, the initial set of paths P1,
a set covering solution method Covering, a set covering cleaning method Cleaning,
a spread criterion SpreadCrit to be used in the Cut phase, a time limit per covering
TL1, and a total time limit TL2. At last, P2 represents the current set of new
paths obtained by the Cut phase, and C is the current covering. At the end of
the algorithm, either a feasible covering C is returned, or an empty set, meaning
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no cover was found. In Algorithm 1, Time is the CPU Time already used by the
approach.

To illustrate how Algorithm 1 works, consider Figure 2.2 which is based on the
hypothetical road network shown in Figure 2.1. Suppose that, in some iteration, we
find the set P1 of paths connecting the three O-D nodes A, B and D. The associated
USCP is represented on the right-side of Figure 2.2. Note that when a path contains
a link, there is an edge connecting them. Now, to solve this USCP, we have to find
the minimum set of links to cover all paths. After solving this USCP, new paths can
be added to P1 to prevent sensors located in Covering phase from being bypassed
by the uncovered paths, which is done by the Cut phase and explained latter at
Section 2.3.2.

Figure 2.2: Example of application of Algorithm 1.

The next sections detail the set covering solution approach that started to be
presented by Algorithm 1 and that will end with Algorithm 5, which describes the
progressive covering approach proposed in this chapter.

2.3.1 Covering phase

The Covering phase of Algorithm 1 can be solved exactly, heuristically or in a hybrid
way, and each of them has its pros and cons. Since P1 is a subset of all paths P ,
the covering algorithms to find P1 have to be carefully chosen, since every time P1

grows, a new USCP is generated and solved again.
Next we propose three approaches to solve the USCP: a greedy, an exact and a

hybrid one.
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Greedy covering heuristic

The greedy approach is the most widely used heuristic to solve the USCP [33], due
to its basic assumption that the best elements (links for the TCLP) are the ones that
cover the largest number of sets (paths) at once. In this sense, our greedy heuristic
is presented in Algorithm 2. It has as input the set of current paths P1, and in each
loop, a link l ∈ A connected to the largest number of paths (l ← argmaxa∈A |P ∗a |)
is selected to receive a traffic counting station (lines 3 and 4), and then those paths
connected to link l are removed from set P ∗ (line 5). The process is repeated until
set P ∗ is empty and the greedy covering C is obtained.

Algorithm 2: Greedy Covering Heuristic
Data: Set of Current Paths P1

Result: Cover C for P1

1 C ← ∅; P ∗ ← P1 ;
2 repeat
3 l← argmaxa∈A |P ∗a |;
4 C ← C ∪ {l}; ;
5 P ∗ ← P ∗ \ P ∗l ;
6 until P ∗ = ∅;

Figure 2.3 illustrates how this heuristic works for the current set of paths P1

presented in Figure 2.2. As it can be seen, link 4 is the one covering the largest
number of paths (five for this example), so it is selected, added to the solution,
and the paths covered by it are removed from P ∗ in the first iteration. The second
iteration selects link 2, and the third one selects link 1, in such a way that C =

{1, 2, 4} covers all paths. Therefore, for set P1 shown in Figure 2.2, the Greedy
covering heuristic places three traffic counting stations on links 1, 2 and 4. However,
it can be seen in Figure 2.1 that there are still uncovered paths. For example, path
{3, 12, 8} connects the O-D pair (A,G) bypassing the sensors placed in C. So, it is
important to add new paths to set P1 in the Cut phase of Algorithm 1.

Cleaning procedure: Solutions returned by heuristic procedures usually contain
redundant links, i.e., more links were selected than needed (CAPRARA et al. [33]).
This happens because some links selected in the current iteration can make some
previously selected links redundant. That is why we proposed a Cleaning procedure
in Line 5 of Algorithm 1. The process of removing redundant links usually leads to
solve another USCP. So, any USCP solution algorithm can be applied in order to
find a tighter cover. Given a current cover C and the set of paths P1 covered by C,
the set of redundant links is defined as RC := {i ∈ C |C \ {i} coversP1}. Thus, we
propose the following cleaning algorithms:
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Figure 2.3: Example of application of the Greedy covering heuristic.

• Random (RC): Select randomly one link in RC , remove it from C, and redefine
RC . Repeat this procedure until C no longer contains redundant links;

• Greedy (GC): Remove all links in RC from C, and apply Algorithm 2 to the
remaining uncovered paths by C; and

• Exact (EC): Remove all links in RC from C, and apply the exact approach
(described below) to the remaining uncovered paths by C.

Exact covering method

This method solves the integer programming model (2.1)-(2.3) for the current set of
paths P1, respecting a pre-established time limit TL. As mentioned in Section 2.2,
problem (2.1)-(2.3) is NP-Hard, consequently TL must be carefully defined.

The Covering phase of Algorithm 1 receives as input the current set of paths
P1 ⊆ P . Therefore, the exact solution found by solving model (2.1)-(2.3) is a lower
bound for the original TCLP problem, i.e., it is a partial covering.

Despite each iteration in Algorithm 1 does not always yield a complete cover
for the original problem, the lower bounds found at each iteration are valid for the
TCLP, and help to prove the optimality with the support of upper bound for the
TCLP.

Hybrid covering heuristic

The hybrid covering heuristic is based on two premises: (i) the number of paths is
much greater than the number of links, so it is expected that the first links selected
by the greedy heuristic of Algorithm 2 are good choices, covering most paths; and
(ii) the exact method is well suited for the USCP with a small set of paths, i.e., the
computational time is small when the USCP to be solved is also small.

15



Algorithm 3 details the Hybrid Covering Algorithm. Let α ∈ [0, 1] be a scalar.
Thus, our hybrid covering heuristic (i) applies the greedy covering heuristic pre-
sented in Section 2.3.1 (Lines 1−5), selecting links l until at least (1−α) · |P1| paths
have been covered generating the cover C1; and (ii) solves the remaining USCP
composed by P ∗ by the exact method (Line 6) described in Section 6, generating
the cover C2. The final cover C is the union of C1 and C2. It is worth to highlight
that if α = 1, the greedy covering heuristic (Lines 1−5) is skipped.

Algorithm 3: Hybrid Covering Heuristic
Data: Current Set of Paths P1, Scalar α, Time limit TL
Result: Cover C for P1

1 C1 ← ∅; P ∗ ← P1 ;
2 while |P ∗| > α |P1| do
3 l← argmaxa∈A |P ∗a |;
4 C1 ← C1 ∪ {l}; ;
5 P ∗ ← P ∗ \ P ∗l ;

6 C2 ← Exact(P ∗, TL) ;
7 C ← C1

⋃
C2 ;

For example, when we apply this hybrid heuristic to the example illustrated in
Figure 2.2 with α = 0.5, l = 4 is the first and only link selected by the heuristic,
since it covers 5 paths, and α · |P1| = 0.5 · 8 = 4. Link 4 covers paths p1, p2, p5, p6
and p8, so the set of uncovered paths {p3, p4, p7} is solved by the exact method.

2.3.2 Cut phase

As mentioned before, after solving the Covering phase of Algorithm 1, new paths
can be added to P1 to prevent sensors located in that phase from being bypassed
by the uncovered paths. That is precisely the purpose of the Cut phase, which
searches for paths violating the last Covering solution, i.e., paths uncovered by the
set of links selected to receive traffic counting stations. In this context, as already
mentioned, it is important to manage the growth of the set P1, during the Cut phase,
in order to reduce the computational time required to solve the SCP at each loop
of Algorithm 1.

That said, we propose a one-to-all Dijkstra [34] variation, to search for uncovered
paths between pairs of O-D nodes. Given G = (N,A) and a starting node i ∈ T ,
the search algorithm manages a set of visited nodes V (initially V = {i}) and a set
of candidate notes F := {j | ∃ (i, j) ∈ A′, i ∈ V, j ∈ N \ V }. It iteratively moves one
node j ∈ F to V , passing only through links in A′ = A \ C in order to find paths
uncovered by C. The spread criteria SpreadCrit is the one responsible to make the
implementation of this Dijkstra variation, deciding which node j ∈ F will be added
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into V .
The separation procedure used in the Cut phase is described by Algorithm 4,

using this Dijkstra algorithm. For every path pij found, if j ∈ T , pij is added to
P2. Since each link in the network is bidirectional and we intend to avoid redundant
paths in the model, we only add in P2 paths from i ∈ T to j ∈ T such that i < j.

Algorithm 4: Cut generation
Data: Network G = (N,A), Cover C and the Spread Criterion

(SpreadCrit)
Result: Set of New Paths P2

1 G′ ← (N,A \ C);
2 P2 ← ∅;
3 for i ∈ T do
4 P2 ← P2 ∪ { pij | j ∈ T, i < j, pij ∈ Dijkstra(G′, i, SpreadCrit)};

Every uncovered path between O-D pairs is a valid Constraint (2.2), so we can
(i) select random paths; (ii) select minimum paths in relation to distance [35]; or
(iii) use the integer programming theory which suggests that constraints with few
variables make the model closer to the convex hull of its integer feasible solutions [36–
38], to select minimum paths in relation to the number of links per path. From these
ideas, we generated three spread criteria SpreadCrit to represent each type of cut
generation (or separation) procedure:

• Non Discriminated (ND): Select next node randomly;

• Minimum Distance (MD): Select next node minimizing the total distance from
initial node. If there are equal Minimum paths, select one randomly; and

• Minimum Link Count (MLC): Select next node minimizing the number of links
from the initial node, in such a way that the Dijkstra algorithm becomes a
breadth first search (BFS). If there are equal minimum paths, one is selected
randomly.

We are now able to present our proposed algorithm to solve the TCLP.

2.3.3 Progressive Covering Algorithm (PCA)

After many experiments, Algorithm 5 showed to be very robust and flexible to solve
the TCLP. It initially receives the Network G; its set W of O-D pairs; initial hybrid
scalar α0 < 1, controlling the initial “hybridness” of the method; time limit for each
iteration TL1, which is the CPU time limit imposed to the exact covering method in
each iteration; and a total time limit TL2. The CPU time spent by other functions
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was too small to be limited. Algorithm 5 consists of progressively solving the TCLP
with a Hybrid approach and every time the problem is solved for a given α, α is
increased, progressively finding better solutions in the process.

More specifically, in the main loop between Lines 3-8: a cover C1 is generated
in Line 4; if C1 is better than the current cover C, C1 becomes the current cover
C (Line 5); and, independently, α is doubled in Line 7. When α > 1, Algorithm 5
usually ends finding a feasible cover C within the total given time limit TL2; when
this is not the case, in Lines 9-10 we force one to be found by applying the Greedy
covering heuristic.

Algorithm 5: Progressive Covering Algorithm (PCA)
Data: Network G, set W , initial hybrid scalar α0 < 1, Time limit iteration

TL1, Time limit total TL2

Result: A solution set C of links to receive traffic counting stations
(sensors).

1 P1 ← ∅; α← α0; C ← A;
2 repeat
3 C1 ← SCF (P1, Hybrid(α), EC,MLC, TL1, TL2 − Time);
4 if Cost(C1) < Cost(C) then C ← C1;
5 α← 2 ∗ α;
6 until α > 1;
7 if Cost(C) = |A| then C ← SCF (P1, Greedy, EC,MLC,∞,∞) ;

2.4 Computational experiments

All the algorithms presented in Section 2.3 were coded in C, compiled with GCC
10.0, and Gurobi 9.01 was used in the Exact covering method. All experiments were
performed on a computer with an AMD R9 processor 3900X @4.15 GHz and 32 GB
DDR4 of RAM memory, under Ubuntu 18.04 x64 operating system. The reported
CPU times are related to single threaded processing times.

The set of instances is composed of 26 real-world cases (see Table 2.1), all de-
rived from the Brazilian states. Each node of origin (or destination) represents a
municipality, and each link represents a segment of state or federal highway. These
data were extracted from a georeferenced database proposed by GONZÁLEZ et al.
[1]. In Table 2.1, column Instance represents the state, |N | is the number of nodes,
|A| is the number of links, |T | is the number of O-D nodes and |W | is the number
of O-D pairs.

Section 2.4.1 presents the internal testing process for Cleaning and Cut proce-
dures presented in Section 2.3. In these tests, Algorithm 1 was run 30 times for each
instance.
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Table 2.1: Instances’ attributes.
Instance |N | |A| |T | |W | Instance |N | |A| |T | |W |

AC 61 84 20 190 PB 384 480 213 22578
AL 169 219 97 4656 PE 362 472 172 14706
AM 74 77 37 666 PI 405 550 212 22366
AP 52 77 13 78 PR 780 1083 381 72390
BA 812 1113 395 77815 RJ 502 721 86 3655
CE 401 612 177 15576 RN 333 433 160 12720
ES 283 394 75 2775 RO 185 258 50 1225

GOeDF 799 1165 241 28920 RR 75 97 13 78
MA 257 355 163 13203 RS 675 859 391 76245
MG 1474 1917 803 322003 SC 481 604 266 35245
MS 343 497 76 2850 SE 183 248 74 2701
MT 711 1069 140 9730 SP 1280 1683 606 183315
PA 289 370 122 7381 TO 372 524 134 8911

Finally, our main results are compared with the other results in literature in
Section 2.4.2. In these tests, Algorithm 5 with α0 = 1/16 and TL1 = 400s was run
15 times and Algorithm 5 with α0 = 1 and TL1 = 1200s was run once for each
instance.

2.4.1 Calibration of Cleaning and Cut procedures

Table 2.2 depicts the statistics that summarize the behavior of Algorithm 1 with
Cover=“Greedy covering heuristic” without time limits varying the Cleaning proce-
dures for all 26 instances. The first column indicates the type of Cleaning method
used, except for the first line, which indicates that no cleaning method was used.
The second and third columns show the deviations (in percentage) of the best re-
sult and the results’ average related to the Best-Known Solution (BKS) for each
method. The fourth column depicts the average CPU times (in seconds) spent for
each method. The results indicate that, when the cleaning method is not applied,
the greedy covering heuristic is the fastest, but it provides the worst quality solu-
tions, presenting the greatest deviations in relation to BKS. In contrast, when the
exact cleaning method is used, we found the best results with a small increase in the
CPU time. The information about all results found for the calibration of cleaning
and cut procedures are reported in the Appendix.

Table 2.2: Average results of the Greedy covering heuristic, when varying the Clean-
ing methods.

Cleaning Type Best (%) Average (%) CPU(s)
No Cleaning 1.69 3.10 0.92
Random (RC) 1.40 2.87 1.31
Greedy (GC) 1.50 2.79 1.06
Exact (EC) 1.18 2.16 1.09

Based on the results of Table 2.2, we decided to use the Exact method as the
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standard Cleaning procedure for the Greedy covering heuristic in all remaining tests.
Figure 2.4 illustrates the behavior of the Algorithm 1 with Cover=“Exact cover-

ing method”, in terms of normalized minimum, average and maximum CPU times,
for 10 of the 26 instances that are usually solved in less than 10 minutes. The
abscissa shows each spread criterion (SpreadCrit=ND, MD, MLC) of the Cut gen-
eration procedure; and the ordinate depicts the normalized average CPU times.

Figure 2.4 shows that the Minimal Link Count (MLC) provided objectively the
best results minus less than 5% of the cases where ND or MD can provide better exact
CPU times, corroborating the polyhedral theory which suggests that constraints
with few variables make the model closer to the convex hull of its integer feasible
solutions, as mentioned in Section 2.3.2.
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Figure 2.4: Behavior of the Exact covering method, in terms of normalized solution
times, when varying the Cut generation procedures.

Based on the results illustrated in Figure 2.4, we decided to use the Minimal
Link Count (MLC) as the standard Cut generation procedure in Algorithm 5.

2.4.2 Literature Comparison

Table 2.3 provides a comparison between the results found in this work with TL2

fixed as 7200s, by Algorithm 5 with α0 = 1/16, TL1 = 500s, focused in finding better
feasible solutions (Columns 5 − 7) and Algorithm 5 with α0 = 1, TL1 = 1200s,
focused in proving optimality (Columns 11 − 14, where LB is the lower bound
found) and the results found by GONZÁLEZ et al. [1], using a Clustering Search
(CS) heuristic (Columns 2− 4) and a Branch-and-Cut algorithm (B&C) (Columns
8 − 10). The best solution costs, the average solution costs, and the CPU times
(in seconds) are presented for the heuristic approaches; and the solution costs, the
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residual optimality gaps and the CPU times (in seconds) are shown for the exact
approaches. The values in italic mean that they are optimal for that algorithm, the
bold ones indicate the BKS, and the new BKSs are highlighted in underlined form,
always in relation to each algorithm. The last two lines show the deviations (in
percentage) of the best result and the results’ average related to the BKS for each
method.

Analyzing the heuristic results shown in Table 2.3, we can conclude that our
PCA (with α0 = 1/16 and TL1 = 500) found results equal or better than CS [1] in
all instances, providing optimal solutions for 20 of them with lower CPU times. We
provided better averages for RJ and GO-DF instances, and we obtained new BKSs
for the hardest instances MT, MG and SP.

Regarding the exact methods, the B&C of GONZÁLEZ et al. [1] solved only four
instances to optimality, whereas our PCA with α0 = 1 and TL1 = 1200s found 20

optimal solutions with much lower CPU times. At last, when combining the results
of both PCAs related to MG and MS, we can ensure that the solutions of 1119 and
150, respectively, are optimal values since the upper bounds of PCA with α0 = 1/16,
TL1 = 500s match the lower bounds of PCA with α0 = 1, TL1 = 1200s. So, in the
end, we were able to find optimal solutions for 22 of the 26 tested instances. All
results found for each approach presented in Table 2.3 are reported in the Appendix.
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2.5 Final remarks of the chapter

This chapter proposed a progressive hybrid algorithm based on set covering to solve
the TCLP. Greedy, exact and hybrid methods, based on a simple and innovative
concept which has not yet been explored in the literature, were developed embed-
ded in a set covering framework to solve 26 real-world instances obtained from the
Brazilian states.

Our algorithm found better results than the clustering search of [1], providing
best-known solutions for the hardest instances MG, MT and SP. Regarding the
exact methods, the branch-and-cut algorithm of [1] solved only four instances to
optimality, whereas we were able to find 20 optimal solutions with lower CPU times.
Besides, two new optimal solutions were found after evaluation of the results.

In view of these results, our work brings a good contribution to the location
of traffic counters on highways. In particular, such results are now supporting the
decision makers of the National Traffic Counting Plan in Brazil.

Regarding future works, we suggest to solve the case that uses partial coverage to
maximize the total number of O-D pairs covered, when considering a pre-established
budget for the sensors. New heuristics and metaheuristics could be proposed to
generate Pareto curves to analyze the trade-off between maximizing the coverage of
the traffic network and minimizing the cost of installing the sensors.
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Chapter 3

Exact and heuristic algorithms for
the fleet composition and periodic
routing problem of offshore supply
vessels with berth allocation
decisions

This chapter considers the periodic supply vessel planning problem with berth allo-
cations (PSVPP-BA). Although the problem solved is the one considered by CRUZ
et al. [2], our approach is new in two important aspects: (i) non-clustered clients, ex-
panding the search space, even knowing that the oil company suggest these clusters;
this approach allows to handle a wider range of instances; and (ii) circular plan-
ning horizon, constraining the search space; such an approach makes the generated
solutions easier to replicate indefinitely due to the problem’s “non-stop operations”
characteristic. Both features make the problem more general and harder to solve.

In order to quickly and efficiently solve the largest available benchmark instances,
we have developed a branch-and-cut algorithm and an adaptive large neighborhood
search (ALNS) heuristic with multiple starts and spaced local searches. The pro-
posed algorithms were published in VIEIRA et al. [39].

3.1 Literature review

The PSVPP belongs to the family of periodic vehicle routing problems (PVRP),
an important branch of the classical vehicle routing problem since many practical
applications impose periodic visits to the customers during the planning horizon, as
shown in BAPTISTA et al. [40].
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The best available exact and metaheuristic algorithms for the PVRP can be
found in BALDACCI et al. [41] and in VIDAL et al. [16]. The PSVPP is signif-
icantly more complicated than the classical PVRP since the supply vessels make
multiple-day voyages, some of the offshore unit have time windows for service, and
the vessels’ departures from the onshore base should be spread as evenly as possible.
The literature devoted to the supply vessels planning problems is rather limited.
The seminal paper of FAGERHOLT and LINDSTAD [42] dealt with a simplified
version of the PSVPP that did not consider the assignment of voyages to the days
of the week, and did not directly address the required spread of departures from
the base. The candidate routes were generated by considering the night closures of
some offshore units. This paper was followed by the works of AAS et al. [43] and
GRIBKOVSKAIA et al. [9], which tackled the pickup and delivery problem involv-
ing one single vessel under limited storage capacity at the offshore units and on the
vessels. GRIBKOVSKAIA et al. [9] developed a tabu search metaheuristic to solve
large instances.

HALVORSEN-WEARE et al. [44] incorporated periodicity in route planning,
including the departing day in the route selection decision variable. These authors
developed a two-phase algorithm which first generates feasible candidate voyages,
and then uses these voyages as an input for a set covering model. SHYSHOU
et al. [45] pursued this research by introducing a large neighborhood search heuristic
(LNS) to solve large instances of the PSVPP, which was quite efficient compared with
the two-phase approach. HALVORSEN-WEARE and FAGERHOLT [12] introduced
an alternative arc-flow model which did not perform well as the voyage-based model.

FERNÁNDEZ CUESTA et al. [46] also studied a pickup and delivery problem
considering a single and multiple vessels. They added the possibility of not ser-
vicing all offshore units by introducing a penalty associated with the losses due to
the unattended demand. They also considered the transportation of all cargo to
be compulsory, which led to the need of expanding the vessel fleet. BORTHEN
et al. [47] adapted the genetic search heuristic of VIDAL et al. [16] to a simplified
version of the PSVPP with a single and fixed departure time, homogeneous fleet
of vessels and no time windows. This was followed by BORTHEN et al. [48] who
introduced a bi-objective approach, this time trying to minimize changes from the
current solution whenever offshore units are added or removed from the current plan.
KISIALIOU et al. [11] extended the work of HALVORSEN-WEARE et al. [44] by
allowing flexible departure times from the onshore base within discrete departure
slots and considering coupled vessels. They proposed an ALNS heuristic to solve
this problem and compared its results with a voyage-based formulation solved by
CPLEX.

BIERWIRTH and MEISEL [49] presented a comprehensive overview of berth
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allocation problems. An ALNS implementation was made in MAURI et al. [50]
in order to assign ships to berthing positions along a quay in a port. This was
followed by ÇAĞATAY IRIS et al. [51] who presented improved formulations. CRUZ
et al. [2] were the first to simultaneously integrate berth allocation decisions with
the determination of the heterogeneous fleet composition and the vessels schedules
in the PSVPP, considering continuous and flexible departures from the base and
historical data to model the berth allocations and departures. They proposed a
multi-step model to solve exactly real-world large instances comprising up to 79
offshore units. KISIALIOU et al. [52] developed an ALNS heuristic to generate
robust supply vessel schedules under stochastic weather conditions, calculating the
expected level of service for different sets of vessels.

3.2 Mathematical modelling

This section presents our mathematical models for the PSVPP-BA which, differently
from CRUZ et al. [2], couples individual vessels to voyages (routes). Let G = (N,E)

be an undirected graph in which the set of nodes N = NB ∪NOI is made up of the
set of berths NB and the set of offshore units NOI , and the set E = {(i, j)|i, j ∈
N, i < j} contains the edges between the nodes in N . Every offshore unit i ∈ NOI

is periodically served by a set V of vessels of types in V ′, and each vessel departs
from a berth b ∈ NB in a time horizon consisting of a set T of periods that can be
infinitely replicated.

Each offshore unit i ∈ NOI has a demand qi expressed in square meters (m2),
a service time ti expressed in periods, and must be served fi times within the time
horizon. Thus, a set of delivery patterns Pi is associated to each offshore unit
i ∈ NOI , corresponding to fi services. As mentioned in Section 1.2, the production
units are serviced typically once or twice a week, while drilling rigs are commonly
serviced at least three times a week. Each vessel type v ∈ V ′ has a capacity Uv,
a travel speed Sv, a fixed cost cfv , and a variable cost cvv per distance unit traveled
in the time horizon. Since T usually consists of the seven days of the week, each
vessel type v ∈ V ′ can perform two or three voyages per week. Each berth b ∈ NB

has a fixed maneuvering and startup time per vessel Lfb , a variable loading rate Lqb
(in terms of period/m2) and a queue capacity Kb with two departing positions k ∈
Kb = {1, 2}, due to problem attribute “Two daily berth departures”. As mentioned
in the Section 1.2, under “Berth departures’ tolerance”, a vessel may start loading
in one period t ∈ T and keep loading during period t + 1 with a departure time
never exceeding half of that period. Such a tolerance, for each period and berth, is
controlled in the model by the constant TOL = 1.5.
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3.2.1 Complete model

The first proposed mathematical formulation is a voyage-based model in which every
voyage r belongs to the set of all non-dominated feasible voyagesR, composed of a set
of sequentially served offshore units r = {i, i ∈ NOI}, with total load Qr =

∑
i∈r qi,

total distance Dr, and total service time Tr =
∑

i∈r ti. The voyages are generated
by enumerating all combinations of offshore units with feasible load for the largest
vessel and following the “Route duration” problem attribute (Section 1.2), and then
a Traveling Salesman Problem [53] is solved and the generated route is added to R.
For each r ∈ R there is a vessel type v ∈ V ′ such that Qr ≤ Uv. Each vessel type in
v ∈ V ′ is associated to a subset Rv = {v ∈ V ′ |Qr ≤ Uv} containing feasible voyages
for v ∈ V ′.

The constant M is a big positive number and |T | is the total number of periods.
The following binary matrices are used in the mathematical formulation: M1

ir indi-
cates whether offshore unit i ∈ NOI belongs or not to voyage r ∈ R; M2

pt indicates
whether delivery pattern p ∈ Pi allows or not offshore unit i ∈ NOI to be serviced
for some voyage starting in period t ∈ T , andM3

ltvr indicates whether voyage r ∈ Rv

started in period t ∈ T with vessel type v ∈ V ′ is active or not in period l ∈ T . Due
to the periodic propriety, M3

ltvr = M3
(l+|T |)tvr.

The binary variables are the following: xrtvnbk = 1 indicates that route r ∈ Rv

starts at period t ∈ T , with vessel n ∈ V of type v ∈ V ′, on berth b ∈ NB and
position k ∈ Kb, otherwise, xrtvnbk = 0; yvn = 1 indicates that vessel n ∈ V of type
v ∈ V ′ is used, otherwise, yvn = 0; zip = 1 determines that delivery pattern p ∈ Pi
is selected for offshore unit i ∈ NOI , otherwise zip = 0.

The integer variable tvnt represents the number of periods occupied by vessel
n ∈ V of type v ∈ V ′ starting at period t ∈ T . The continuous variables are as
follows: tWB

bt is the waiting time for berth b ∈ NB at period t ∈ T imposed by the
previous period; tLBbtk represents the loading time for berth b ∈ NB in position k ∈ Kb

and period t ∈ T ; and finally tWV
vnt , tLVvnt and tRVvnt respectively define, the wait, the

load and the route time for vessel n ∈ V of type v ∈ V ′ starting at period t ∈ T .
The complete mathematical formulation is as follows:

Minimize
∑
v∈V ′

∑
n∈V

(cfvyvn +
∑
r∈Rv

∑
t∈T

∑
b∈NB

∑
k∈Kb

cvvDrxrtvnbk) (3.1)
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subject to∑
p∈Pi

zip = 1 i ∈ NOI (3.2)

∑
v∈V ′

∑
n∈V

∑
r∈Rv

∑
b∈NB

∑
k∈Kb

M1
irxrtvnbk =

∑
p∈Pi

M2
ptzip i ∈ N, t ∈ T (3.3)

∑
l∈T

∑
r∈Rv

∑
b∈NB

∑
k∈Kb

M3
ltvrxrtvnbk ≤ yvn v ∈ V ′, n ∈ V, t ∈ T (3.4)

∑
v∈V ′

∑
n∈V

∑
r∈Rv

xrtvnbk ≤ 1 b ∈ NB , k ∈ Kb, t ∈ T (3.5)

tLBbtk =
∑
v∈V ′

∑
n∈V

∑
r∈Rv

(Lfb +QrL
q
b)xrtvnbk b ∈ NB , k ∈ Kb, t ∈ T (3.6)

tWB
bt +

∑
k∈Kb

tLBbtk ≤ TOL b ∈ NB , t ∈ T (3.7)

tWB
b(t+1) ≥ t

WB
bt +

∑
k∈Kb

tLbtk − 1 b ∈ NB , t ∈ T (3.8)

tWB
b(|T |+X) = tWB

bX X ∈ Z, b ∈ NB , t ∈ T (3.9)

tWV
vnt ≥ tWB

bt +
∑
α<k

tLBbtα + (
∑
r∈Rv

xrtvnbk − 1)M v ∈ V ′, n ∈ V, t ∈ T, b ∈ NB , k ∈ Kb (3.10)

tLVvnt =
∑
r∈Rv

∑
b∈NB

∑
k∈Kb

(Lfb +QrL
q
b)xrtvnbk v ∈ V ′, n ∈ V, t ∈ T (3.11)

tRVvnt =
∑
r∈Rv

∑
b∈NB

∑
k∈Kb

(Tr +
Dr

Sv
)xrtvnbk v ∈ V ′, n ∈ V, t ∈ T (3.12)

tvnt ≥ tWV
vnt + tLVvnt + tRVvnt v ∈ V ′, n ∈ V, t ∈ T (3.13)∑

t∈T
tvnt ≤ |T | v ∈ V ′, n ∈ V (3.14)

yvn ∈ {0, 1} v ∈ V ′, n ∈ V (3.15)

tWB
bt ∈ [0, TOL− 1] b ∈ NB , t ∈ T (3.16)

tLBbtk ≥ 0 b ∈ NB , k ∈ Kb, t ∈ T (3.17)

tWV
vnt ≥ 0, tLVvnt ≥ 0, tRVvnt ≥ 0 v ∈ V ′, n ∈ V, t ∈ T (3.18)

tvnt ∈ Z+ v ∈ V ′, n ∈ V, t ∈ T (3.19)

zip ∈ {0, 1} i ∈ NOI , p ∈ Pi (3.20)

xrtvnbk ∈ {0, 1} r ∈ Rv, t ∈ T, v ∈ V ′, n ∈ V, b ∈ NB , k ∈ Kb. (3.21)

The objective function (3.1) minimizes the sum of fixed and variable sailing costs.
Constraints (3.2) and (3.3) ensures that any selected set of routes fulfills the periodic
service for each offshore unit, servicing them with spread departures enforcing the
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“Periodic service” and “Spread departures from the base” problem attributes (Sec-
tion 1.2). Constraints (3.4) guarantee that the active routes in each period t ∈ T
for each vessel n ∈ V of type v ∈ V ′ do not overlap, managing the heterogeneous
fleet. Constraints (3.5) ensure that at most one route r ∈ Rv with vessel n ∈ V of
type v ∈ V ′ using berth b ∈ NB and position k ∈ Kb in period t ∈ T can exist.
Constraints (3.6) manage the berth loading times. Constraints (3.7) guarantee that
the berth loading and waiting times do not exceed the operational tolerance TOL
in any period. Since TOL = 1.5, these constraints enforce that the current period
cannot take more than half (12h) of the next period, according to the “Berth depar-
tures’ tolerance” problem attribute (Section 1.2). Constraints (3.8)−(3.9) state that
if the loading time of some berth exceeds one period, then the exceeding amount
of time is carried over the next period as waiting time. Constraints (3.10)−(3.14)
manage the loading, waiting and total routing times for the vessels, restricting them
to the planning horizon. Lastly, Constraints (3.15)−(3.21) define the domains of the
variables.

In order to illustrate some aspects of this model, Figure 3.1 shows a case with
routes R = {A,B,C,D}, one berth NB = {1}, using two vessels of type 1, so
V = {1, 2}. Route A loads and departures at period 2, Route B loads at period 6
but departures at period 7, route C loads at period 7 after route B and departures
at period 1 and route D loads and departures at period 4. Since no pair of routes
starts at the same period, all routes use only the first berth position. Thus, the
set of variables equal to one is X = {xA,2,1,1,1,1, xB,6,1,1,1,1, xC,7,1,2,1,1, xD,4,1,2,1,1}. Let
the total loading time to routes A, B, C and D be, respectively, 0.6, 1.3, 0.9 and
0.5 periods, so tLB1,2,1 = 0.6, tLB1,4,1 = 0.5, tLB1,6,1 = 1.3 and tLB1,7,1 = 0.9, following
Constraints (3.7). Considering Constraints (3.8) and (3.7), for period 6, tWB

1,7 ≥
1.3− 1 and 1.3 ≤ 1.5. For period 7, the exceeding loading time from period 6 (0.3)
is carried as the waiting berth time tWB

1,7 , so following Constraints (3.8) and (3.7),
for period 6, tWB

1,8 ≥ 0.3 + 0.8 − 1 and 0.3 + 0.9 ≤ 1.5 and they are all satisfied,
with Constraints (3.9) forcing the exceeding loading time from period 7 (0.2) to be
carried to period 1 with tWB

1,7+1 = tWB
1,1 .

Figure 3.1: Example of a vessel and berth cyclical scheduling.

Finally, Constraints (3.4) verify in each time period t ∈ T , for each vessel n ∈ V
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of type v ∈ V ′, all the routes that have started in any previous period and are
still active in period t. Therefore, they are necessary restrictions to avoid collisions
when starting routes for each vessel, but they are not sufficient since they do not
consider the berth dependant loading times. Let scomp be an integer solution of
model (3.1)−(3.21). Let Scompx be the set composed by the “xrtvnbk part” of scomp

such that xrtvnbk = 1. Then, Scompx is a set of vectors representing only the selected
routes. In order to illustrate the non-sufficiency of Constraints (3.4), suppose that
Scompx = {x37,2,3,1,1,2, x24,2,3,2,1,1, x82,5,3,1,1,1, x56,6,3,2,1,1} and, in period 2, vessel 1

of type 3 has a waiting time equal to 0.25 day, and a joint loading and routing
time equal to 2.80 days. Then, we have one berth with two positions, and two
vessels of type 3 performing two routes each. Vessel 1 departs at t = 2 in route
37 and at t = 4 in route 82, and vessel 2 departures at t = 2 in route 24 and
at t = 6 in route 56. This solution respects Constraints (3.4), but is infeasible in
practice. In fact, the total route time for vessel 1 of type 3 is equal to d2.80 + 0.25e
= 4, thus this vessel will not be able to perform route 82 at t = 4. For this
example, constraint x37,2,3,1,1,2 + x24,2,3,2,1,1 + x82,5,3,1,1,1 + x56,6,3,2,1,1 ≤ 3 could be
included in (3.1)−(3.21) to cut scomp. However, only the set {x37,2,3,1,1,2, x24,2,3,2,1,1,
x82,5,3,1,1,1} of variables is required to avoid the overlap, then it should be sufficient
to use constraint x37,2,3,1,1,2 + x24,2,3,2,1,1 + x82,5,3,1,1,1 ≤ 2.

Constraint (3.22), derived from scomp, cuts this solution if it contains any over-
lapping route not considered by Constraints (3.4) in which we consider only the
variables responsible for each overlap.

∑
(r,t,v,n,b,k)∈Scomp

x

xrtvnbk ≤ |Scompx | − 1. (3.22)

Consequently, in a branch-and-bound tree, whenever a new integer solution scomp

of model (3.1)−(3.21) is found, a new Constraint (3.22), derived from Scompx , is added
to (3.1)−(3.21) within a branch-and-cut framework.

3.2.2 Reduced model

The complete model (3.1)−(3.21) suffers from the curse of symmetry: it is possible
to obtain different solutions, of the same objective value, by changing vessels of the
same type or swapping berth schedules. The solutions obtained are different, but the
routes, berth scheduling, fleets and related costs are the same. Another weakness
of this model is the presence of the “bigM” coefficient in Constraints (3.10). These
characteristics make the model (3.1)−(3.21) hard to solve.

In order to overcome these difficulties, we propose a branch-and-cut framework
based on the better-conditioned reduced formulation (3.23)−(3.31). This formula-
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tion considers the binary variables xrtv and zip. If xrtv = 1, route r ∈ Rv starts
at period t ∈ T , with vessel type v ∈ V ′; otherwise, xrtv = 0. If zip = 1, delivery
pattern p ∈ Pi is selected for offshore unit i ∈ NOI , as in (3.1)−(3.21); otherwise,
zip = 0. It also considers the integer variables yv which indicates how many vessels
of type v ∈ V ′ are used. Finally, if cvtl = 1 indicates that some route with vessel
type v ∈ V ′, starting at period t ∈ T and active for l ∈ T periods is used; otherwise,
cvtl = 0. The reduced mathematical formulation is as follows:

Minimize
∑
v∈V ′

cfvyv +
∑
t∈T

∑
v∈V ′

∑
r∈Rv

cvvDrxrtv (3.23)

subject to ∑
p∈Pi

zip = 1 i ∈ NOI (3.24)

∑
v∈V ′

∑
r∈Rv

M1
irxrtv =

∑
p∈Pi

M2
ptzip i ∈ N, t ∈ T (3.25)

∑
l∈T

∑
r∈Rv

M3
ltvrxrlv ≤ yv t ∈ T, v ∈ V ′ (3.26)

∑
v∈V ′

∑
r∈Rv

xrtv ≤ D t ∈ T (3.27)

yv ∈ Z+ v ∈ V ′ (3.28)

zip ∈ {0, 1} i ∈ NOI , p ∈ Pi (3.29)

cvtl ∈ {0, 1} v ∈ V ′, t ∈ T, l ∈ T (3.30)

xrtv ∈ {0, 1} r ∈ Rv, t ∈ T, v ∈ V ′. (3.31)

The objective function (3.23) minimizes the sum of fixed and variable sailing
costs. Constraints (3.24) and (3.25) ensure the periodic service for each offshore
unit. Constraints (3.26) allocate the fleet according to the maximum number of
active routes per period and per vessel type. Constraints (3.27) ensure that no
period exceeds the maximum number of departures D, which is twice the number of
available berths. Constraints (3.28)−(3.31) define the domain of the variables. The
sets of indexes and parameters are the same as defined in (3.1)−(3.21).

Although being similar to the models of HALVORSEN-WEARE and FAGER-
HOLT [12] and KISIALIOU et al. [11], the reduced formulation (3.23)−(3.31) is
a voyage (route) based model that performs the route scheduling and handles the
fleet sizing while having a smaller number of variables and no symmetry or “BigM”
coefficients.

Analogously to Constraints (3.4), Constraints (3.26) are also necessary but not
sufficient to avoid collisions when starting routes for each vessel in model (3.23)
−(3.31). Let sred be an integer solution of (3.23)−(3.31), obtained in some node of
its branch-and-bound tree. Let Sredx be the “xrtv part” of sred such that xrtv = 1.
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Constraints (3.32), derived from sred, are generated through a separation procedure
for each new incumbent solution in order to bring the solution space from (3.23)
−(3.32) to (3.1) −(3.22) as detailed below.

∑
(r,t,v)∈Sred

x

xrtv ≤ |Sredx | − 1. (3.32)

Finally, as Constraints (3.26) have a larger search space than Constraints
(3.4), the difference between them is fixed by Constraints (3.33)-(3.34), dynami-
cally generated through a separation procedure as well, with Sredxv being the vari-
ables from Sredx with vessel of type v, Fv is the correct fleet size and lrv is the
amount of periods route r ∈ R remains active with vessel type v ∈ V ′, i.e.
lrv := dLoadT ime(rv) + RouteT ime(rv)e. Constraints (3.34) can all be statically
generated, however in our experiments, dynamically generating them showed better
results for non-clustered instances. The details of how the search spaces differ are
explained in Section 3.3.2.

yv −
∑

(r,t,v)∈Sred
xv

cvtlrv ≥ Fv − |Sredxv | (3.33)

cvtlrv ≥ xrtv (r, t, v) ∈ Sredxv . (3.34)

3.3 Branch-and-cut algorithm

The complete model (3.1)−(3.21) contains a berth scheduling subproblem which is
in fact a feasibility problem, so it does not interfere on the objective function, but
adds two indices, various constraints and variables for managing these constraints.
This was one of the motivations for proposing the reduced model (3.23)−(3.31).

So, whenever an incumbent solution is generated for the reduced model, we can
try to generate a feasible berth schedule from it. If such a solution is found, it
is accepted; otherwise, it can be used to generate a suitable cut to reinforce the
reduced model in order to approximate its solution space to that associated with
the complete formulation. As mentioned in CODATO and FISCHETTI [54], when
cuts based on infeasible sets are minimal and generated within low computational
times, this approach generally produces positive results.

Therefore, this process of transforming an incumbent reduced solution into a
feasible solution for the complete formulation consists in solving a feasibility sub-
problem that will be called SubProblem, and will be detailed in Section 3.3.1. How-
ever, this process is not simple, and requires a study of the reasons for infeasibility,
detailed in Section 3.3.2, in order to guarantee the generation of valid cuts for the
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separation method, which will be detailed in Section 3.3.3.

3.3.1 Feasibility subproblem

The feasibility subproblem SubProblem receives an incumbent solution sred of the
reduced problem (3.24)−(3.32) comprising a heterogeneous fleet and a set of selected
routes with fixed vehicle types and periods. To transform this incumbent solution
into a feasible solution for the complete problem, it is necessary to determine, for
each route a particular vessel n ∈ V , a berth b ∈ NB, and a berth position k ∈ Kb,
while verifying constraints (3.2)−(3.22).

In this way, SubProblem can be formally described as [(3.4)?−(3.21)?, (3.35)]
where ? means that r, t and v are fixed in the values obtained from the “xrtv part”
of sred in these constraints.

∑
n∈V

∑
b∈NB

∑
k∈Kb

xrtvnbk = 1 (r, t, v) ∈ Sredx , (3.35)

If SubProblem returns a feasible solution, it will be feasible solution for the
complete problem with a heterogeneous fleet, and a set of routes so that each route
has a departure period, type and vessel identification, berth and berth position, while
respecting all berth scheduling constraints; otherwise, the causes of infeasibility must
be analyzed to generate an appropriated cut, as detailed in Section 3.3.2.

3.3.2 Causes of infeasibility

There are two cases in which an incumbent solution sred for the reduced model
cannot be feasible for the complete model: the impossibility of allocating routes to
vessels, and the impossibility of allocating vessels to berths.

In the reduced formulation, Constraints (3.26) control the size and mix of the
fleet, according to the number of active routes per period, and the solution sred

satisfies these constraints. However, this fleet may not be sufficient to satisfy Con-
straints (3.4) of the complete problem, leading to the first cause of infeasibility - the
impossibility of allocating routes to vessels.

To illustrate this situation, Figure 3.2(a) shows a possible solution of the reduced
formulation that comprises a set of routes with defined periods for a given vessel
type. Constraints (3.26) define a fleet of yv = 3 vessels, since in each period there
is a maximum of three active routes. Therefore, in order to transform the sred

solution of Figure 3.2(a) into a feasible solution to the complete formulation, these
routes must be served by three vessels and simultaneously verify Constraints (3.4).

33



However, Figure 3.2(b) shows a case that, at best, there will always be a route that
will not be allocated to a vessel.

There is a pair of well-known combinatorial problems that explains what happens
in this first case. Let G = (V,E) be a graph, representing Figure 3.2, in which every
vertex i ∈ V is a route with fixed departure time and every edge (i, j) ∈ E means
that routes i and j are active at some period. So, finding the right-hand side yv
of Constraints (3.26) is equivalent to determining the maximum clique size of G,
known as ω(G). On the other hand, transforming yv into yvn of Constraints (3.4) is
equivalent to solving the minimum vertex colouring (MVC) problem over G. There
is a well-known relation in graph theory stating that ω(G) ≤MVC(G) for any graph
G [55]. Therefore, as shown in Figure 3.2, and from the previous graph relation,
we may need more vessels when transforming a feasible solution sred into a feasible
solution scomp.

Figure 3.2: First cause of infeasibility: the impossibility of allocating routes to
vessels.

The inconvenience is that solving the minimum vertex colouring problem over
a generic graph G is NP-hard, since its decision version is NP-complete [56].
In KISIALIOU et al. [11], a voyage-based model based on flexible departures from
the base and the possibility of coupling vessels by swapping their schedules was
proposed. Their model was solved exactly on small- and medium-size instances.
Generalizing these concepts, CRUZ et al. [2] introduced the integration of berth
allocation decisions to the fleet composition and periodic routing problem, solving
the largest available instances. Both considered a weekly planning horizon for the
installations and a two-week planning horizon for the vessels.

Conversely, we decided to use a weekly cyclical horizon for both vessels and in-
stallations, and to solve the reduced problem within a branch-and-cut framework in
such a way that whenever an incumbent solution sred is infeasible only due to fleet
allocation, as illustrated in Figure 3.2, a cut of type (3.33) based on sred, for each
vessel type v with problem allocating routes to vessel, with Fv being the correct fleet
size (minimal colouration) for the vessel type v, is added to the reduced formula-
tion aiming to approximate its solution space to that associated with the complete
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formulation. This approach works in our context since the colouring problems that
we will have to solve are not very large.

The second cause of infeasibility occurs when an incumbent solution sred for the
reduced model cannot be transformed into a feasible solution for the complete model
due to the impossibility of allocating vessels to berths. To illustrate this situation,
Figure 3.3(a) shows a possible solution for the reduced formulation that is composed
of one berth, five routes allocated to a vessel of type 1, and two routes allocated to
a vessel of type 2. We can see that for the vessel of type 1, there are at most two
simultaneously active routes per period, while for the vessel of type 2, this number
is reduced to at most one active route per period. Therefore, Constraints (3.26)
define a fleet of two vessels of type 1 and one vessel of type 2. In Figure 3.3, “VT1”
and “VT2” denote vessel types; “L + R Time” represents the loading time plus the
route time; and “Load time” indicates only the loading time. Figure 3.3(b) shows
the only feasible vessel allocation to routes shown in Figure 3.3(a), represented by
VT1 - 1, VT1 - 2 and VT2 - 1, and the two possibles berth allocations, indicated
by * and **.

Figure 3.3: Second cause of infeasibility: the impossibility of allocating vessels to
berths.

As previously mentioned, when analyzing only the routes and vessel types, the
fleet composed of two vessels of type 1 and one vessel of type 2 is sufficient to handle
the five routes of Figure 3.3(a). For example, Routes A and D can be allocated to
the first vessel of type 1, Routes B, C and E to the second vessel of type 1, and
finally Routes F and G can be allocated to the vessel of type 2 as illustrated by
Figure 3.3(b), VT1 - 1, VT1 - 2 and VT2 - 1.

However, since there is a single berth, an infeasibility is generated when con-
sidering the loading and route times of each route. For instance, if route A is the
first to be executed, illustrated by Figure 3.3(b), Berth 1 *, the waiting time for
loading route B will be 0.21, and this route will have a total duration of 0.21 +
1.81 = 2.02. As a consequence, route B will be active in period 3, overlapping route
C. This infeasibility also occurs if route B is the first to be executed illustrated by
Figure 3.3(b), Berth 1 **. In this case, the waiting time for loading route A will be
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0.12, and this route will have a total duration of 0.12 + 2.91 = 3.03. Subsequently,
route A will be active in period 4, overlapping route D. Since there is no other way
to allocate the five routes to the two types of vessels and there is only one berth, it
is impossible to transform the incumbent solution sred of the reduced model into a
feasible solution scomp for the complete formulation. Nonetheless, note that if route
C did not exist, it would be possible to allocate Routes A and E to a vessel of type
1 and routes B and D to another vessel of type 1, without generating overlaps.

3.3.3 Separation procedure

The separation procedure presented in Algorithm 6 generates Constraints (3.32)
dynamically, in order to approximate the search space of the reduced model to that
of the complete model. This procedure receives an incumbent solution sred of the
reduced model and then solves a minimum colouring problem for each type of vessel,
as shown in Section 3.3.2; as a result, we obtain the necessary fleet to serve the routes
of sred (Line 1). If the fleet determined by the colouring problem is the same one used
in sred, the feasibility SubProblem, is solved (Line 2). If this problem is infeasible
(Line 3), as in the example shown in Figure 3.3, then the solution sred is reduced,
according to Algorithm 7 (Line 4), and a cut (3.33) is added to the reduced problem
(Line 5). Conversely, if the fleet determined by the colouring problem is different
from that indicated by sred (Line 6), as in the example shown in Figure 3.2, the sred

fleet is replaced with the one generated by the colouring problem (Line 7). If the
feasibility SubProblem is infeasible (Line 8), as in the example shown in Figure 3.3,
then the solution sred is reduced, according to Algorithm 7 (Line 9), and a cut (3.32)
is added to the reduced problem (Line 10). If the feasibility SubProblem is feasible,
a cut (3.33) is added to the reduced problem (Line 12). Algorithm 7 is used in Lines
4 and 9 of the Algorithm 6. It tries to reduce the number of variables xrtv from sred

(Line 2) which allows a stronger cut (3.32) for the reduced problem.
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Algorithm 6: Separation procedure
Input: Incumbent sred

1 Fleet←MinimalColouring(sred);
2 if Fleet = Fleet(sred) then
3 if SubProblem(sred) is infeasible then
4 sred ← Reduce(sred);
5 Add cut (3.32) to (3.23)−(3.31) using sred;

6 else
7 Fleet(sred)← Fleet;
8 if SubProblem(sred) is infeasible then
9 sred ← Reduce(sred);

10 Add cut (3.32) to (3.23)−(3.31) using sred;
11 else
12 Add cut (3.33) to (3.23)−(3.31) for each v with conflicting minimal colouring,

using sred;

Algorithm 7: Reduce
Input: Solution sred
Output: Minimal Solution sred

1 forall (r, t, v) ∈ Sredx do
2 Remove xrtv from sred;
3 if SubProblem(sred) is feasible then
4 Insert xrtv into sred;

5 return sred;

3.4 Adaptive large neighborhood search heuristic

Introduced by ROPKE and PISINGER [57], ALNS extends the metaheuristic large
neighborhood search (LNS) proposed by SHAW [58], which is based on the principle
of destruction and reconstruction. At each iteration, ALNS applies an operator to
destroy a solution s and reconstruct it in a different way, thus generating a new
solution s′. This new solution is accepted according to the simulated annealing (SA)
acceptance criterion [59]: if s′ is better than s, the search continues from s′, otherwise
the search continues from s′ with a given probability. What differentiates ALNS from
LNS is that in LNS the destruction (removal) and construction (insertion) operators
are chosen with the same probabilities, whereas in ALNS this selection is made
according to an adaptive mechanism by which, at each iteration, the probability of
selecting a method depends on its past performance by the adaptive layer.

The ALNS effectiveness was tested on various vehicle routing problems due to its
ease of adaptation to many problems and yielded good results. This work couples
the ALNS well tested routing decisions with multiple starts in order to explore a
larger set of fleet distributions and spaced local searches to speed up the search.
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3.4.1 Metaheuristic overview

Already implemented in some works (see [60–62]), the multi-start scheme works
with three parameters which are the number of starts α, the number of iterations
per start β, and the total number of iterations γ. Algorithm 8 presents the main
procedure. It receives the general problem data, then generates α initial solutions
and applies an ALNS (Algorithm 9) limited to β iterations. The best generated
solution s∗ over the α starts is then given to one more ALNS as an initial solution,
with a limit of γ − αβ iterations.

Algorithm 8: Multi-start metaheuristic
Input: Graph G, set of periods T , set of vessels V and set of global parameters
Output: Best feasible solution found s∗

1 S ← ∅;
2 for k = 1 to α do
3 Build an initial solution s;
4 s← ALNS(s, β);
5 S ← S ∪ {s};
6 s∗ ← sl ∈ S|∀s ∈ S → C(sl) ≤ C(s);
7 s∗ ← ALNS(s∗, γ − αβ);
8 return s∗.

Algorithm 9 presents the general framework of the ALNS implemented in this
work. It receives an initial solution as the best known solution sbest and the maximum
number of iterations N . It then initializes the weights for the insertion and removal
operators, the current solution scurr, the temperature θ, the best feasible solution
found sfeasible, which is stored, and the most promising solution sprom identified in
the last δ iterations, the one to which the local searches are applied.

Lines 3−26 constitute the main loop. An auxiliary solution saux is first defined,
and removal and insertion operators are applied. From Lines 7−11, the most promis-
ing solution sprom is updated. If the current iteration is multiple of δ, a local search
is applied to sprom, the solution found is kept as saux, and sprom is reset. Lines 12−13
update the best known feasible solution found sfeasible. Lines 14−26 describe the
usual SA mechanism and the ALNS acceptance flow which includes updating the
scores and the weights used in the selection of the insertion and removal operators
when the current iteration is multiple of ρ. We use a penalized objective function
with adjustable weights which are updated in Line 24. The related update process is
described in the next section. At the end of the main loop, the best feasible solution
found sfeasible is returned.
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Algorithm 9: ALNS(sbest, N)
Input: Initial Solution sbest and maximum number of iterations N
Output: Best feasible solution found sfeasible

1 Initializes the weights for the insertion and removal operators;
2 scurr ← sbest; θ ← C(sbest)θ

′
0; C(sfeasible)←∞; C(sprom)←∞;

3 for iteration = 1 to N do
4 saux ← scurr;
5 Select a removal operator o− and apply it to saux;
6 Select a insertion operator o+ and apply it to saux;
7 if C(saux) ≤ C(sprom) then
8 sprom ← saux;

9 if iteration is multiple of δ then
10 saux ← LocalSearch(sprom);
11 C(sprom)←∞;

12 if saux is feasible and C(saux) ≤ C(sfeasible) then
13 sfeasible ← saux;

14 if C(saux) ≤ C(sbest) then
15 sbest ← saux; scurr ← saux;
16 else
17 if C(saux) ≤ C(scurr) then
18 scurr ← saux;
19 else
20 if AcceptSA(C(saux), C(scurr), θ) then
21 scurr ← saux;

22 Update scores πo− and πo+ ;
23 if iteration is multiple of ρ then
24 Update penalties’ weights;
25 Update insertion and removal operators’ weights;

26 θ ← µθ;

27 return sfeasible.

3.4.2 Search space and feasibility

The search space is computed as [(3.2)−(3.21)] and by two types of violation: (i)
load violations associated with vessels exceeding their capacities; and (ii) time vio-
lations associated with vessels performing voyages concurrently in the same period
(Constraints (3.4)), or berths occupying too much loading time from one period
to the next (Constraints (3.8)) or exceeding the total loading time in the planning
horizon (Constraints (3.7)).

Let Ot
v and Eq

v be the total overlapping time and exceeding load, respectively,
for vessel v; let Et

ct be the total loading time exceeded (greater than TOL) for berth
b ∈ NB in period t ∈ T ; and let Ett

b be the total loading time exceeded in the
planning horizon for berth b ∈ NB. Each type of violation has an associated weight:
ωq > 0 and ωt > 0 are the penalty weights for load and time violations, respectively.
Hence, a cost for violations is computed as:
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CV (s, ωq, ωt) = ωq
∑
v∈V

Eqv(s) + ωt(
∑
v∈V

Otv(s) +
∑
b∈NB

(Ettb (s) +
∑
t∈T

Etct(s))). (3.36)

Considering that the terms of Equation (3.36) are non-negative, solution s is
feasible if and only if CV (s, ωq, ωt) = 0. Finally, the penalized objective function
cost for a solution s is given by C(s) = C ′(s)+CV (s, ωq, ωt) where C ′(s) is given by
objective function (3.1). The penalty weights have equal initial values ω0 which are
adjusted for each segment of ρ iterations. If the best solution for the ALNS (sbest)
is infeasible for the load constraints, ωq ← τ+ωq with τ+ > 1, otherwise ωq ← τ−ωq

with τ− ≤ 1. This procedure is also used for the weight ωt when sbest violates time
constraints.

3.4.3 Initial solution

The general strategy is to diversify the initial fleet with poor routing sequences, so
that the ALNS heuristic can iteratively reduce the fleet size and improve the routing.
Every initial solution is generated in two phases called Fix and Split. The Fix phase
assigns to each offshore unit u ∈ NOI a randomly selected delivery pattern p ∈ Pu.
Thus, each period t ∈ T has a list Lt of offshore units to be split into voyages made
by the available vessels. In the Split phase, for each period t ∈ T a vessel v ∈ V is
randomly selected and installations u ∈ Lt are randomly chosen to be serviced by
vessel v respecting its capacity. When the capacity of vessel v is reached, a berth is
assigned to it. While list Lt is not empty, a new vessel is randomly selected and the
process is reiterated. When all periods have been evaluated, the initial solution is
obtained.

3.4.4 Removal and insertion operators

At each iteration of the ALNS heuristic, n− ∈ [n−1 |NOI |, n−2 |NOI |] offshore units are
removed from saux by a removal operator o− and reinserted by an insertion operator
o+. The parameters n−1 and n−2 define the range of the search around the current
solution scurr [57].

Our ALNS uses five removal and three insertion operators based on algorithms
proposed by ROPKE and PISINGER [63], MATTOS RIBEIRO and LAPORTE [64]
and KOÇ et al. [62]. We also tested the removal operators ‘average cost per unit’
from PARASKEVOPOULOS et al. [65], ‘historical node-pair’ and ‘cluster removal’
from PISINGER and ROPKE [66], as well as other SHAW [58] variants, but after
extensive computational experiments, we realized that the best results were obtained
with the five removal and the three insertion operators described as follows.

40



For the removal operators, we use three Shaw variants (RO1, RO2 and RO3),
which are based on SHAW [58], a random removal (RO4) and a worst-removal
procedure (RO5). The Shaw variants try to remove similar offshore units. The
similarity between offshore units u, v ∈ NOI is given by Equation (3.37), where duv
is the distance between the installations, Dmax is the maximum distance between any
two offshore units, qu and qv are demands of the offshore units, Q is the maximum
demand found for all offshore units, fu and fv are the frequencies of the offshore
units, and |T | is the number of periods; φ1, φ2 and φ3 are positive weights:

Shaw(u, v) = φ1
duv
D

+ φ2
|qu − qv|

Q
+ φ3

|fu − fv|
|T |

. (3.37)

Let L− be the list of removed offshore units. Initially, the Shaw variants start
by randomly selecting one offshore unit u ∈ NOI to be removed, thus L− ← {u}.
The remaining offshore units v ∈ NOI \ L− are sorted in non-decreasing order
according to Equation (3.37). Then, the operator selects a random number a ∈ (0, 1]

and the offshore unit v ∈ NOI \ L− with index dap|NOI \ L−|e in NOI \ L−, is
removed. The parameter p ≥ 1 must be tuned. Higher values of p increases the
probabilities to select offshore units of NOI \ L− with lower Shaw distances. The
list of removed offshore units is updated: L− ← L−+{v}. This process is reiterated
until the number of removed installations is reached (n−). At each iteration, the
initial offshore unit u is selected from L−.

On this basis, with the φ values indicated by ROPKE and PISINGER [63] and
KOÇ et al. [62], the following Shaw variants are:

• Shaw removal (RO1) uses φ1 = 0.4, φ2 = 0.3 and φ3 = 0.3;

• Shaw neighbours removal (RO2) uses φ1 = 1, φ2 = 0 and φ3 = 0; and

• Shaw frequency removal (RO3) uses φ1 = 0.2, φ2 = 0 and φ3 = 0.8.

The Random removal (RO4) operator removes randomly offshore units until
reaches n−. This operator generates a poor set of removed offshore units, but this
helps diversify the search.

The Worst removal (RO5) operator also uses the removal strategy used in the
Shaw operator. In this case, each non-removed offshore units v is assigned a cost
which is the difference of the solution with and without it. All non-removed offshore
units are sorted in non-decreasing order based on this cost and the removal operator
used (that which uses a ∈ (0, 1] and p ≥ 1) and the Shaw operator is applied. This
process is reiterated until n− offshore units have been reached.
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Conversely, every insertion operator o+ starts with the set of removed offshore
units L− and inserts them back in solution s. The insertion operator Φ(u, s) inserts
the offshore unit u into the best position of solution s. That is, Φ(u, s) finds the
best position to insert u taking into account the incremental cost for solution s. All
delivery patterns for u are analysed to define this best position. Thus, let C(Φ(u, s))

be the incremental cost for solution s when u is inserted into the best position.
The first insertion operator, called Deep greedy insertion (IO1), finds u ∈

L−|∀v ∈ L− → C(Φ(u, s)) ≤ C(Φ(v, s)) and inserts it into the best position Φ(u, s).
This process is reiterated until all removed offshore units have been inserted back.
The second insertion operator, called Greed insertion (IO2), randomly selects an
offshore unit u ∈ L− and inserts it into the best position Φ(u, s). This process ends
when all removed offshore units have been inserted back. Finally, the last insertion
operator is the k-regret insertion (IO3) which is based on a k -regret criterion, as in
ROPKE and PISINGER [63] and MATTOS RIBEIRO and LAPORTE [64]. Given
a set of removed offshore units L−, for each offshore units u ∈ L−, it computes a
regret value which is based on the delivery patterns available for u. For each off-
shore unit u ∈ L−, the k-best insertion positions per period are obtained. Each
position has a cost increment, and therefore a regret cost can be found for each
period. Thus, for each delivery pattern available for u, we compute a regret cost for
it which is obtained by adding the regrets generated for each period defined for the
corresponding delivery pattern. We then choose the offshore unit u ∈ L− with the
largest value of regret per delivery pattern to be inserted into solution s.

3.4.5 Local search

The local search mechanism was inspired by VIDAL et al. [16] and is described in
Algorithm 10 which contains two main steps: voyage improvement (VI) and deliv-
ery pattern improvement (PI). These steps are sequentially applied on the current
solution s, with the first one selected randomly. The algorithm ends when no im-
provement can be found for solution s. Step VI tries to improve the total distance
travelled by all vessels per period by applying swap moves, and Step PI tries to find
a better delivery pattern distribution for the offshore units.

Step VI first randomly selects a period t ∈ T . Two offshore units u and v, both
serviced in period t, are then randomly chosen. Let ku, kv ∈ {0, 1, 2, 3} be indicators
of size. For each combination of ku and kv, the ku installations serviced after u are
swapped with the kv installations serviced after v. If this move reduces the cost, Step
VI ends and returns true. Otherwise, the swap is undone and a new combination is
tested. When all combinations are evaluated, two new installations not yet selected
are chosen and the combinations are tested again. If all installations have been
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Algorithm 10: Local Search
Input: Solution s
Output: Improved solution s

1 k0 ← TRUE; k1 ← TRUE;
2 b← Rand(TRUE,FALSE);
3 repeat
4 if b then
5 k0 ← PI(s);
6 else
7 k1 ← V I(s);

8 b← ¬b;
9 until k0 ∨ k1;

10 return s.

tested, a new period t not yet selected is randomly chosen and the entire process is
repeated. Finally, if an improvement move is not found, Step VI returns false.

For Step PI, an installation u is randomly selected from NOI . This installation
is removed from s and reinserted according to position Φ(u, s), generating solution
s′. If the cost of solution s′ is better than that of solution s, Step PI returns true
and ends. Otherwise, a new installation not yet evaluated is randomly selected from
NOI . If all installations have been evaluated and no improvement has been found,
Step PI ends, returning false.

It is very important to consider berth allocation decisions in the periodic routing
of offshore supply vessels since an infeasible allocation of a berth yields a high cost.
The incorporation of berth allocation decisions in the periodic planning of offshore
supply vessels makes the problem more difficult to solve by exact approaches, but
this was not the case for our ALNS heuristic. Here, the berth allocation decisions
were integrated to the insertion and removal processes. We tested some specific
heuristics for swapping routes or reallocating berths, as in BORTHEN et al. [47]
and KISIALIOU et al. [11], but they only increased the complexity of the heuristic
with only a negligible improvement in solution quality.

3.4.6 Adaptive layer

Every iteration, the ALNS chooses a pair of insertion and removal operators through
a roulette wheel mechanism. Initially, all operators have the same weight. The search
is divided into segments of ρ iterations each. When a segment ends, the weights are
updated based on the score obtained for the last segment, taking into account the
number of times each operator has been used during that segment.

The score of an operator is increased by a parameter equal to σ1, σ2 or σ3 when
it identifies a new solution. If a pair of removal-insertion operator finds a new best
solution, their scores are increased by σ1, if it finds a solution better than the current
one, their scores are increased by σ2, and if it finds a non-improving solution which
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is accepted, their scores are increased by σ3. Thus, the weight φi of operator i is
updated by Equation (3.38), where πi is the resulting score and ξi is the number of
times operator i has been used in the last segment, where the parameter τA is called
reaction factor :

φi = (1− τA)φi + τA
πi
ξi
. (3.38)

3.4.7 Simulated annealing

We use the SA acceptance criterion, i.e., given a current solution s, a neighbor
solution s′ is accepted if it provides a better cost, and it is accepted with probability
exp[(C(s′) − C(s))/θ] otherwise, where θ ≥ 0 is the current temperature and C(s)

is the penalized solution cost defined in Section 3.4.2. The temperature starts at θ0
and is multiplied by a cooling rate µ at every iteration.

It is expected that θ will have values proportional to C(s) throughout the search.
The choice of the initial temperature θ0 and the final temperature θF are therefore
related to the cost of the initial solution sinitial for a consistent acceptance criterion
throughout the search process. Thus, the values of θ0 and θF are chosen according
to parameters θ′0 and θ′F , explicitly defined by Equations (3.39) and (3.40). This
leads to the cooling rate µ which is dependent of the maximum number of iterations
N , as expressed by Equation (3.41):

θ0 = C(sinitial)θ
′
0 (3.39)

θF = C(sinitial)θ
′
F (3.40)

µ = N−1

√
θ′F
θ′0
. (3.41)

The values of θ′0 e θ′F must be tuned. The results for the PSVPP-BA are shown
in Section 3.5.2.

3.5 Computational experiments

This section presents the results of our computational experiments. From the E&P
operators’ perspective, or even from the perspective of offshore logistics providers,
cost savings can be achieved through a better planning of the PSV fleet. This
planning must take into consideration the berth capacity constraints in a 24/7 con-
tinuous operation, and the berth time dependents on the amount of cargo loaded
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rather than being a fixed time. These operational characteristics make the problem
hard to solve for large instances.

The ALNS based heuristic and exact the methods was implemented in the C
programming language, using the gcc 10.2 compiler with -O3 option. The computer
used in all experiments was an AMD Threadripper 9 3960x 24c/48t with static
clocks @ 4.0Ghz processor, 128GB DDR4 of RAM and 130GB of SSD reserved
expanded memory, running Ubuntu 20.04 x64 operating system. The commercial
solver used for the TSP solving, complete model, reduced model and subproblem
was Gurobi 9.0.3. All the reported heuristic and TSP solving results are from
single thread processing, and the complete and reduced models results are the total
24 thread processing time, and all computational times are expressed in seconds.
Before presenting the results, we introduce the set of instances, and the details of
the parameters tuning processing.

3.5.1 Set of instances

The fleet-sizing and periodic routing problem with berth allocation decisions tackled
in this chapter is difficult to solve, due to its combinatorial nature and the size of the
considered instances. These are the largest available benchmark instances for this
problem. In order to achieve a good-quality solution or even an optimal solution,
CRUZ et al. [2] solved the problem in steps, with a Multi Step Model Approach
(MSMA), aiming to reduce the processing time. The instances solved in this chapter
are real-based cases obtained from a Brazilian oil company, from its operations at
Campos Basin. Four cases are presented: C10, C15, C41 and C79, having 10, 15,
41 and 79 offshore units, respectively. In cases C10 and C15, routes are generated
considering all possible combinations for all units. In cases C41 and C79, CRUZ et al.
[2] generated routes considering all possible combinations of the units belonging to
their clusters (i.e., groups of offshore units), while we solved these instances without
clustering, which makes them even harder to solve by mathematical programming
algorithms.

The largest available real-world instance, C79 (CRUZ et al. [2]), is made up
to 79 offshore units operating in the Campos Basin, while C10, C15 and C41 are
cut-down versions of C79. Four berths are available at the onshore base and the
maximum number of departures from each berth in each day is limited to two.
The heterogeneous fleet is composed of three types of vessels: PSV4500 with deck
capacity of 900 m2, PSV3000 deck capacity of 600 m2 and PSV1500 with deck
capacity of 300 m2. All vessels share approximately the same travel speed of 10
knots (≈ 18.52 km/h).

CRUZ et al. [2] also defined segregated instances with an “S” suffix. Their moti-
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vation to segregate the instances came from the fact that the production installations
usually remain fixed in the same position for many years, while the drilling rigs and
maintenance platforms are constantly moved from one oilfield to another. In this
work, there is no need to consider these instances, since they would be the same
as those without the suffix. The authors also tested C41 and C79 with different
numbers of berths. Therefore, in order to standardize the tests, each instance is
named with the number of offshore units, weekly visits and available berths: for
example C79-112-5 instance has 79 offshore units to be served, 112 weekly visits
and five available berths.

For more extensive testing, we created instances C21-39-1, C30-48-2, C50-70-
3, C60-89-3 and C69-99-4 with the following procedure: starting with instance
C79-112-4, randomly select and remove offshore units until the targeted number is
reached, than each offshore unit has its coordinates randomized within the bound-
ary box defined by the offshore units presented in instance C79-112-4. In order to
evaluate the isolated impact of clustering, for each new instance and for instance
C15-1-1, we created a manual cluster arrangement based on location of the offshore
units. The instances with 41 and 79 offshore units already had cluster arrangements
from CRUZ et al. [2] and they were kept. Finally, two extra instances, C66-94-4 and
C40-62-2, were created just for the heuristic parameter tuning, applying the same
method used to create the new instances.

Table 3.1 shows, for each test instance and cluster configuration, the total number
of feasible routes and the total CPU time to solve all respective Traveling Salesman
Problems. The CPU time ranges from 0.05 seconds and approximately 3.7 hours.
It is important to highlight that these times are included in the computational
experiments performed for the exact methods.

3.5.2 Parameters tuning

All parameters, except for α, β and γ, were calibrated through single executions of
the ALNS heuristic. The initial parameters values were estimated based on related
articles, such as KISIALIOU et al. [52] and KOÇ et al. [62], or simply by trial and
error.

As mentioned in Section 1.2, the fixed costs are much higher than the variable
costs for the PSVPP-BA. Therefore, in order to attenuate the influence of the vari-
ance of the initial random solutions on the calibration process, a random seed and an
initial solution were fixed in each run (within a total of 30 fixed initial solutions), so
that the difference between the rounds was only due the parameters to be calibrated.

The tuning of the multi-start parameters α, β and γ was based on the same
principle with a sequence of 15 random seeds and a sequence of 100 initial solutions
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Table 3.1: Number of offshore units, cluster arrangements and feasible non domi-
nated routes.

#Offshore Units #Clusters #Routes CPU(s)
10 1 912 0.22
15 1 10,021 2.79
15 2 370 0.05
21 1 28,929 8.79
21 2 1,103 0.18
30 1 91,689 20.69
30 4 581 0.08
41 1 782,289 209.55
41 5 1,373 0.22
41 7 438 0.06
50 1 1,298,168 373.71
50 7 591 0.07
60 1 4,071,416 1529.14
60 8 1,178 0.15
69 1 14,930,022 6402.72
69 8 1,169 0.16
79 1 29,013,740 13317.54
79 9 2,168 0.32
79 12 1,107 0.11

were fixed for each tuning run, having a total of 100× 15 = 1, 500 initial solutions,
per instance. In this way, for the same values of α and β, a larger γ implies the
same best solution after the α starts, but a better final solution is not guaranteed
since the temperature values per iteration in the final ALNS execution are different.

The tuning of the ALNS’ parameters occurred in three different ways: in isolation
(ρ, p, δ, and τA), and in triplets ((σ1, σ2, σ3), and (α, β, γ)), according to the types
of correlations between them. The results were normalized based on the initial
parameter values, and the average CPU times were omitted when the variation of
the parameters did not change the CPU times by more than 5%.

As a result of the tuning process, Table 3.2 presents the initial values, the tested
values and the best achieved values for each parameter of the ALNS based heuristic
developed in this work. The details about the tunning process are reported in the
Appendix.

3.5.3 Computational results and comparative analysis

Considering the parameters presented in Table 3.2, the heuristic was executed 15
times, with random seeds and the exact methods were executed once per instance.
Table 3.3 presents, for each instance, the results of the branch-and-cut algorithm
described in Section 3.3 to the reduced model and the results of the complete for-
mulation, including the value of the best incumbent solution found (UB), the lower
bound (LB) and CPU time (CPU, in seconds). It also shows the results of the
ALNS comprising the best solution cost (Best), the average solution cost (Average),
the coefficient of variation (CV) in percentage based on average, and the average
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Table 3.2: Parameters settings.
Parameter Description Initial value Tested values Best value

τ− Infeasible update weight 1.15 1.05, 1.10, 1.15, 1.25 1.15
τ+ Feasible update weight 0.9 0.6, 0.75, 0.9, 1.00 0.9
n−1 Lower removal rate 0.1 0.05, 0.10, 0.15, 0.20 0.1
n−2 Upper removal rate 0.3 0.20, 0.25, 0.30, 0.40 0.25
θ′0 Initial relative temperature 1/3 1, 1/3, 1/10, 1/50 1/50
θ′F Final relative temperature 1/300 1/50, 1/100, 1/300, 1/500 1/500
ρ Segment size 50 25, 50, 100, 200, 300 50
p Removal’s Level of determinism 4 1, 2, 4, 6, 10 4
δ Local search interval 50 10, 25, 50, 200, 500 50
τA Adeptness rate 0.1 0.01, 0.05, 0.1, 0.2, 0.3 0.05
σ1 Best score 10 0, 5, 10 5
σ2 Improvement score 5 0, 5, 10 0
σ3 Worst score 0 0, 5, 10 10
γ Total number of iterations 50,000 (15, 50, 150, 300)x103 300,000
α Number of starts - 1, 15, 35, 50, 75, 100 50
β Iterations per start - 100, 300, 500, 1000 100

CPU time (CPU, in seconds). A “-” value means that no result was found. Table
3.4 similarly presents the results for the exact methods with the different cluster
arrangements for each instance in order to further analyse the performance of both
exact methods and compare the results with the non-clustered instances, evaluating
the impact of clustering.

Analyzing the results for the exact methods for Tables 3.3 and 3.4, it is important
to highlight that either an optimal solution was found or we stopped due to lack
of memory or we stopped due to a time limit of 86400 seconds. The branch-and-
cut (B&C) method applied to the reduced model showed a clear advantage over
the complete formulation, providing better bounds, with significantly reduced CPU
times.

The ALNS, when compared to the exact methods, presented the best perfor-
mance, both in terms of solution quality and computational time. The percentile
coefficient of variation values demonstrate the robustness of the ALNS heuristic, re-
maining below 1% for the smaller instances, and between 0.5% and up to 2% for the
larger instances, which correspond to the real-world cases derived from the Brazilian
oil industry. The CPU times scaled well between the instances, with a maximum
time of 583.3 seconds for the largest instance, which is quite reasonable for a difficult
problem such as the PSVPP-BA. Finally, Table 3.3 shows that the increase in the
number of berths per group of instances does not have a measurable impact on the
CPU times.

Table 3.5 shows the comparison between the MSMA [2] and the ALNS results
for the C41 group of instances. Columns 2−4 and 5−6 show the results for the
two-berth instances and the three-berth instances, respectively. For the two-berth
scenario, MSMA found a solution of total cost 261.99, and the ALNS was able to
find a better total cost solution of 256.23, with both lower fleet and routing costs.
In the three-berth scenario, MSMA found a solution of total cost 256.59, and the

48



Table 3.3: Heuristic and exact results for all instances.
Complete Model Branch and Cut ALNS

Instance UB LB CPU(s) UB LB CPU(s) Best Average CV(%) CPU(s)
C10-15-1 53.77 53.77 85.6 53.77 53.77 1.2 53.77 53.77 0.00 13.4
C15-24-1 80.37 77.11 86400.0 80.37 80.37 82.5 80.37 80.37 0.00 21.6
C21-39-1 202.55 147.9 86400.0 176.33 151.08 86400.0 160.75 160.95 0.08 48.4
C30-48-2 - 205.56 18873.5 221.84 211.68 86400.0 221.84 225.05 0.54 99.2
C41-59-2 - 233.59 5100.4 259.91 234.54 86400.0 256.23 257.22 0.91 150.8
C41-59-3 - 233.59 5042.4 252.64 233.95 86400.0 252.01 254.88 0.29 149.4
C50-70-3 - - 623.4 385.64 343.68 86400.0 356.97 359.47 0.98 220.6
C60-89-3 - - 1730.7 482.40 464.00 57981.2 464.19 470.38 1.27 291.6
C69-99-4 - - 6612.6 - 455.94 26540.7 480.84 495.84 1.01 351.7
C79-112-4 - - 13417.7 - - 14562.3 559.59 578.45 1.99 583.3
C79-112-5 - - 13356.9 - - 14562.4 554.75 562.76 0.75 549.0
C79-112-6 - - 13303.4 - - 14562.9 554.89 557.21 0.45 547.7

Table 3.4: Results with clustered instances and exact methods.
Complete Model Branch and Cut

Instance #Clusters UB LB CPU(s) UB LB CPU(s)
C15-24-1 2 90.18 90.18 2785.4 90.18 90.18 10.2
C21-39-1 2 177.16 165.15 86400.0 177.14 170.17 86400.0
C30-48-2 4 246.68 222.14 86400.0 226.28 226.28 185.4
C41-59-2 5 - 252.10 86400.0 259.56 259.56 77400.1
C41-59-3 5 302.02 246.79 86400.0 259.52 259.52 1750.8
C41-59-2 7 262.09 261.84 86400.0 262.09 262.09 33500.7
C41-59-3 7 262.09 261.88 86400.0 262.09 262.09 1065.4
C50-70-3 7 392.82 366.44 86400.0 375.07 375.07 57488.6
C60-89-3 8 - 448.90 86400.0 483.03 470.14 86400.0
C69-99-4 8 - 460.58 86400.0 492.43 492.43 65781.6
C79-112-4 9 - 536.16 86400.0 583.78 559.42 86400.0
C79-112-5 9 - 536.16 86400.0 566.85 557.56 86400.0
C79-112-6 9 - 536.16 86400.0 566.85 557.56 86400.0
C79-112-4 12 - 547.42 86400.0 577.22 574.78 86400.0
C79-112-5 12 - 548.10 86400.0 577.22 572.74 86400.0
C79-112-6 12 - 548.10 86400.0 577.22 572.74 86400.0

ALNS was able to find a better total cost solution of 252.01, with lower fleet cost
and higher routing costs.

Table 3.6 provides a comparison between MSMA and the ALNS results for the
C79 group of instances. Columns 2−4, 5−6 and 7−8 show the results for the four-
berth instances, the five-berth instances, and the six-berth instances, respectively.
The four-berth scenario is the most restrictive and closest to the real case faced by
the Brazilian oil industry. The MSMA found a solution of total cost 570.37 for the
C79S(4B) instance, and the ALNS was able to find a better total cost solution of
559.59, with both lower fleet and routing costs, although concentrating the fleet of
vessels only on the PSV4500 type, with deck capacity of 900 m2. For the five-berth
scenario, MSMA was not able to find an optimal solution, but found an incumbent
solution of total cost 591.55 and 5.58% of optimality gap for the C79(5B) instance,
the same solution found for the C79(4B) four-berth instance. The ALNS was able to
find a better total cost solution of cost 554.75 for the C79-5 instance, with both lower
fleet and higher routing costs, although again the fleet concentrates mainly on the
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Table 3.5: Comparison between MSMA [2] and ALNS for the C41 group of instances.
C41 MSMA MSMA ALNS MSMA ALNS
Instance C41S(2B) C41(2B) C41-2 C41(3B) C41-3
Clusters 7 5 1 5 1
Total Cost 261.99 270.20 256.23 256.59 252.01
Fleet Cost 248 256 243 243 238
Routing Cost 13.99 14.20 13.23 13.59 14.01
PSV4500 5 5 4 4 3
PSV3000 1 2 2 2 3
PSV1500 1 0 1 1 1
Routes 17 19 17 19 19
CPU(s) 322 99,000 150.8 487 149.4

PSV4500 vessel. Finally, in the six-berth scenario, MSMA found a solution of total
cost 558.55, and the ALNS was able to find a better total cost solution of 554.89,
with lower routing costs, and the same fleet cost, although mainly concentrated
on the PSV4500 vessel. Once again, it is important to emphasize that we are not
considering clustered installations.

Table 3.6: Comparison between MSMA [2] and ALNS for the C79 group of instances.
C79 MSMA MSMA ALNS MSMA ALNS MSMA ALNS
Name C79S(4B) C79(4B) C79-4 C79(5B) C79-5 C79(6B) C79-6
Clusters 12 9 1 9 1 9 1
Total Cost 570.37 591.55 559.59 591.55 554.75 558.55 554.89
Fleet Cost 540 560 532 560 527 527 527
Routing Cost 30.37 31.55 27.59 27.75 28.49 31.55 27.89
PSV4500 9 8 14 8 13 8 13
PSV3000 6 7 0 7 1 6 1
PSV1500 0 1 0 1 0 1 0
Routes 34 38 28 38 29 38 29
CPU(s) 259,180 144,299 583.3 144,299 549.0 109,585 547.7

To conclude, Tables 3.5 and 3.6 show that the proposed ALNS-based heuristic
was able to find better solutions than those of CRUZ et al. [2] with both a smaller
fleet and smaller routing costs, with well balanced fleets for the C41 instances and
fleets concentrated mainly on the PSV4500 vessel for the C79 instances. Lastly, the
good heuristic results were uphold by the good exact results of the branch-and-cut
method applied to the reduced model.

3.6 Final remarks of the chapter

We have presented an exact branch-and-cut method and an adaptive large neigh-
borhood search (ALNS) heuristic with multiple starts and spaced local searches to
solve the periodic supply vessel planning problem (PSVPP) arising in the upstream
offshore petroleum logistics chain. The PSVPP tackled in this work consists of
a periodic vehicle routing problem while simultaneously determining the optimal
fleet size and a mix of heterogeneous offshore supply vessels, their one week routes
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and schedules for servicing the offshore oil and gas installations, besides the berth
allocations at the supply base.

We have extended the previous works of HALVORSEN-WEARE and FAGER-
HOLT [12], KISIALIOU et al. [11] and CRUZ et al. [2] since we used a replicable
one-week planning horizon both for the offshore units and the vessels. We solved
the largest available real-world instances, without dividing them into clusters, and
we achieved good solutions relatively fast, performing significantly better than the
branch-and-cut algorithm.
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Chapter 4

Metaheuristics with variable
diversity control and neighborhood
search for the Heterogeneous
Site-Dependent Multi-depot
Multi-trip Periodic Vehicle Routing
Problem

This chapter approaches the heterogeneous site-dependent multi-depot multi-trip
periodic vehicle routing problem (HSDMDMTPVRP). Given a real world demand,
we propose a metaheuristic named Adaptive Variable Neighborhood Race (AVNR)
which combines variable neighborhood search and adaptive mechanisms integrated
with a shrinking population managed with a diversity mechanism. We also adapted
and implemented the metaheuristic Unified Hybrid Genetic Search (UHGS) [16] for
the computational experiments. Our results show that AVNR finds good results for
several instances.

A scientific paper containing these results is under production for submission to
a high quality journal.

4.1 Literature Review

The VRP addressed in this chapter can be seen as a combination of the follow-
ing problems: Periodic Vehicle Routing Problem (PVRP); Site-dependent Vehi-
cle Routing Problem (SDVRP); Multi-depot Vehicle Routing Problem (MDVRP);
Fleet Sizing Heterogeneous Vehicle Routing Problem (HVRP); and Multi-trip Vehi-
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cle Routing Problem (MTVRP).
The literature about VRP started with DANTZIG and RAMSER [13]. Based on

a real case study, the problem consists of sizing a homogeneous fleet, constrained by
the vehicles’ capacity, and minimizing the total traveled distance. This VRP class
is usually called Capacitated Vehicle Routing Problem (CVRP).

The periodic vehicle routing problem (PVRP) is an VRP extension in which
vehicle routes are spread over several periods, and each client has a service frequency
and delivery pattern constraints. Introduced in BELTRAMI and BODIN [67], with
many real world applications, the problem was studied in many scientific works as
surveyed in CAMPBELL and WILSON [68].

The site-dependent vehicle routing problem (SDVRP) can be seen as an par-
ticular case of the PVRP (except for the heterogeneous fleet), since both problems
can be characterized as multilevel routing problems: at the first level, an allowable
vehicle type (or pattern of delivery days) is selected for each customer and at the
second level, a capacity and time constrained VRP is solved for each type of vehicle
(or day of the period). Taking advantage of this characteristic, CORDEAU and
LAPORTE [69] solved the SDVRP applying the same algorithm used to solve the
PVRP [70]. Thus, the MDVRP can be seen as a particular case of the PVRP as
well [16], differentiated by each level having a different starting depot.

The heterogeneous vehicle routing problem (HVRP) was introduced at GOLDEN
et al. [71] and its most generic version consists of defining routes for a fleet of vehicles
with different capacities, fixed and variable costs to serve a set of clients. KOÇ et al.
[15] present a good review of this problem.

The vehicle routing problem with multiple use of vehicles (VRPM) [72] or, more
commonly called, the multi-trip vehicle routing problem (MTVRP) [73], is char-
acterized by the fact that vehicles are driven by drivers who have working hours
established by law and, as such, can carry out more than one trip per day. In prac-
tice, multiple travel schedules are important because they reduce costs as it reduces
the number of vehicles used and best employs the time of the drivers.

When analyzing the literature, to the best of our knowledge, there are no works
that address all these VRPs together. The two closest works found in the liter-
ature are COELHO et al. [74], in which the VRP with heterogeneous fleet and
multiple trips is studied but with no periodicity, and ALONSO et al. [75], in which
the problem is called Site-Dependent Multi-Trip Periodic Vehicle Routing Problem
(SDMTPVRP) which is periodic, site dependent, fixed heterogeneous fleet and multi
trips but no sizing and no multi-depot. As in the work of of ALONSO et al. [75], in
this chapter we tested the AVNR against the best algorithms in the literature for
each VRP variant.
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4.2 Mathematical Description

Let G = {N,E} be a graph, where N is the set nodes and E is the set of edges. The
nodes are partitioned in the set of depots, represented by D, and the set of clients,
represented by U = N\D. To each client i ∈ U is associated a demand qi, a service
time φi, a set of delivery patterns Pi, and it has to be served fi times (frequency).
So, all clients have a total number of services nts =

∑
i∈U fi.

The travel paths between nodes are represented by the set of edges E =

{(i, j)|∀i, j ∈ N, i 6= j}. An edge (i, j) ∈ E, between nodes i and j has a travel dis-
tance dij and a travel time tij. For any edge e = (i, j) ∈ E, considers that eo = i and
ed = j. When comparing edges, given edges a and b, a = b means ao = bo ∧ ao = bo,
a < b means ao < bo ∨ (ao = bo ∧ ad < bd), otherwise b < a.

The set of available vehicle types is represented by K. Each vehicle type k ∈ K
has the fixed cost per use cfk , a cost per traveled distance cvk, maximum capacityM l

k,
maximum operation time Md

k , maximum amount of trips per period M t
k, maximum

amount of vehicles available per period M r
k and a time coefficient Md2t

k (inverse of
the speed) which is used to compute the time of the routes. Also, Ki ⊆ K is the set
of vehicle types that can visit node i ∈ N and Nk ⊆ N is the set of nodes that can
be visited by vehicle type k ∈ K.

4.2.1 Solution representation

A solution s is a set of partial solutions sptkd for each combination of period t ∈ T ,
vehicle type k ∈ K and depot d ∈ D. A partial solution sptkd is a set of routes r where
each route r is a set of trips l and each trip l is as set of clients given the sequence
used to serve them. Figure 4.1 presents an example illustrating all these elements.
Each route r has a total distance Dist(r, d) and a total time Time(r, k, d) which is
defined according to the vehicle type k. Each trip l has a total load Load(l) that
considers the served clients. If the maximum amount of routes M r

k is not reached,
there is an empty (available) route with an empty trip. For problems without a trip
limit M t

k, for each route, there is always an empty trip.
A solution s is valid if each client i ∈ U is served with a delivery pattern p(s, i) ∈

Pi. For each partial solution sptkd, there is a set of all served clients called Giant
Tour gt(sptkd) that is defined as the union of its subsets, keeping each sequence of
clients served without trip delimiters, , see example shown in Figure 4.2. For each
solution s, there is a sorted multiset of edges e(s) in increasing order, since the
problem has symmetrical routes (any route can be taken in reverse for the same
cost). For all trips in s, each time a vehicle goes from node i ∈ N to node j ∈ N , if
i < j → (i, j) ∈ e(s), otherwise (j, i) ∈ e(s). We use a multiset of edges because it
can contain repeated edges over the periods, as shown in Figure 4.2.

54



Figure 4.1: Example of problem with three periods, two vehicle types and one depot.
Solution s (i) has three partial solutions (ii), four routes (iii) and six trips (iv).

Figure 4.2: Example of all giant tours gt(sptkd) (v) and the sorted multiset of edges
e(s) (vi) for the example of Figure 4.1.

4.3 Search mechanisms

The two metaheuristics proposed in this Chapter have many search mechanisms in
common. The first one is the current state of the art for VRP presented in VIDAL
et al. [16] and generalized for a wide range of VRPs in VIDAL et al. [76], called
Unified Hybrid Genetic Search (UHGS). The UHGS includes advanced diversity
control, feasibility control and a restart mechanism which were adapted here to
solve the HSDMDMTPVRP and its VRP sub-problems (CVRP, SDVRP, MTVRP,
HVRP, PVRP, MDVRP and SDMTPVRP).

The second one is original, was named Adaptive Variable Neighborhood Race
(AVNR) and shares many mechanisms with UHGS. It considers multiple solutions
in a race. At each step of the race, an Iterated oscillating search (IOS) algorithm is
applied to each solution resulting in a new one, and the resulting pool of solutions is
reduced to the next step given a survival selection process. With a smaller number
of solutions, the next step will have more time to explore each solution. The main
difference between the two proposed heuristics is the fact that UHGS crosses solu-
tions in order to generate new ones and AVNR finds new solutions to be explored
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based on the current ones.

4.3.1 Feasibility and search space

The search space is the one described at Section 4.2 and by two types of violation: (i)
load violations associated with vehicles exceeding their M l

k; and (ii) time violations
associated with vehicles performing trips exceeding their Md

k .
Let ELkm be the total exceeding load, for vehicle type k and sequence of clients

m and let ETkrd be the total exceeding time for vehicle type k, route r and depot d.
Each violation has an associated penalty weight ωl > 0 (load violation) and

ωt > 0 (time violation). Hence, the costs for violations given a partial solution sp

are computed as:

Ωp(sptkd) =
∑
r∈sptkd

(ωl
∑
m∈r

ELkm + ωtETkrd) (4.1)

pCost(sptkd) =
∑
r∈sptkd

(cfk + cvk
∑
m∈r

Dist(m, d)) + Ωp(sptkd) (4.2)

Considering that the terms of Equation (4.1) are non-negative, a solution s is
feasible if and only if Ω(s) = 0 (Equation (4.3)). Finally, the penalized objective
function cost for a solution s is given by Equation (4.4).

The initial values for the penalty weights are instance-dependent. Thus, ωl =
cfx+c

v
xD

max

Q
and ωl = cfx+c

v
xD

max

Md2t
x Dmax , where x is the largest vehicle type available, Dmax

is the maximum distance between two clients, and Q is the maximum demand
difference between two clients.

The penalty weights are dynamically adjusted by each metaheuristic by the
penalty weight adjustments ω+ and ω−. For increasing the penalties, ω+ > 1,
otherwise, ω− ≤ 1.

Ω(s) =
∑
sptkd∈s

Ωp(sptkd) (4.3)

C(s) =
∑
sptkd∈s

pCost(sptkd) (4.4)

For both algorithms, the penalty weights adjustments occur every ρ iterations.
For the UHGS heuristic, each solution obtained after an education process, where
a local search is applied (details in Section 4.3.12), can be feasible or not. If the
proportion of infeasible solutions by load or time is out of the target proportion
range ξInf ± 0.05, the respective penalty weight is updated. For example, if the
proportion of infeasible solutions by load is higher, it is increased with ωl ← ω+ωl,
and if lower, it is decreased with ωl ← ω−ωl. The same process is applied to penalty
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weight ωt.
For the AVNR heuristic, the update is based on a solution s and a violation tol-

erance ξv. For a solution s, we compute the violation levels Φl(s) for load (Equation
(4.5)) and Φt(s) for time (Equation (4.6)). If s is feasible (Ω(s) = 0), both penalty
weights are decreased with ω−, otherwise, they are updated according to their vio-
lation levels. For example, if Φl(s) > ξv, the penalty weight for load is increased:
ωl ← ω+ωl. This process is also applied to violation evolving time (ωt).

Φt(s) = max
sptkd∈s,r∈s

p
tkd

{
ETkrd
M t
k

}
(4.5)

Φl(s) = max
sptkd∈s,r∈s

p
tkd

{
maxm∈r ELkm

M l
k

}
(4.6)

4.3.2 Multi-trip split algorithm

The proposed metaheuristics use a multi-trip split algorithm during the search pro-
cess, based on the algorithm presented in PRINS [77]. The procedure proposed by
PRINS [77] receives a sequence of clients gt called a “giant tour” (see Section 4.2.1),
a vehicle k and a depot d and returns a partial solution sptkd serving all client in gt,
with vehicle k, using depot d, by solving a minimal path problem, for an auxiliary
directional acyclic graph.

In this work, we propose a multi-trip split algorithm that also solves a minimal
path problem but with auxiliary directional acyclic multigraph. The result of this
algorithm is still optimum for single trip problems but optimally is not ensured for
multi-trip problems.

Algorithm 11 uses an auxiliary array of partial solutions Sp with one partial
solution Spi for each item of gt. It starts by extending gt and performing the ini-
tialization of Sp (Lines 1 −3), and then the main loop (Lines 4−12) is started. The
main idea is the same as presented by PRINS [77]. Each partial solution Spi is a set
of routes servicing all clients from gt1 until gti. When a new partial solution s′ also
servicing all clients from gt1 until gti is found, Spi is updated.

Each step of the main loop has a reference index i with fixed partial solution Spi ,
a target index j, and a sequence Trip which contains the clients from gti+1 until gtj.
At each iteration of the inner loop (Lines 8−12), the algorithm asks if, by adding
Trip to Spi , there is a partial solution s′ (Lines 8 and 11) with lower cost then the
current Spj , either as a new route (Lines 8−9) or a new trip (Lines 10−12). If so, the
partial solution Spj is updated. At the end, the best split of routes with the sequence
of clients found Spn is returned.
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Algorithm 11: Multi Trip Split
Input: Sequence gt with n clients, vehicle type k ∈ K and depot d ∈ D
Output: Partial solution Spn

1 gt← {0} ∪ gt;
2 for i = 1 to n do pCost(Spi )← +∞ ;
3 Sp0 ← {}; pCost(S

p
0 )← 0;

4 for i = 0 to n− 1 do
5 Trip← {};
6 for j = i+ 1 to n do
7 Trip← Trip ∪ {gtj};
8 s′ ← Spi ∪ {{Trip}};
9 if pCost(s′) < pCost(Spj ) then Spj ← s′ ;

10 foreach r ∈ Spi do
11 s′ ← (Spi \ r) ∪ (r ∪ {Trip});
12 if pCost(s′) < pCost(Spj ) then Spj ← s′ ;

13 return Spn;

4.3.3 Neighborhood

The neighborhood η is a set of candidate insertion points computed based on a given
solution s and period t to a client i. A candidate insertion point is a unique identifier
in which a client i can be inserted after it.

The neighborhood has to be carefully chosen since if too small, the heuristic
may not be able to find the best solutions given a search space too narrow. If the
neighborhood is too large, the heuristic’s performance can suffer with too many un-
necessary search candidates. So, we try to balance the size of the neighborhood by
using two parameters: the neighborhood threshold ξη and the minimum neighbor-
hood size ηrmin. Let ηξi be the number of clients from U \ {i} with distance from i

smaller than ξDDmax, so the neighborhood size ηmaxi is the largest value between ηξi
and ηrmin.

Given a client i, a solution s and period t, Algorithm 12 starts with an empty
neighborhood η (Line 1) and defines V which is a set with all other clients (U \ {i})
sorted by increasing distance from i (Line 2). Each client j can be added to η if it
is served at period t and the vehicle that serves client j can also serves client i at
the period (Lines 5).

The first loop (Lines 3−5) tries to add the first ηmaxi clients from V to η. After
that, for each vehicle type k ∈ K, that can serve i, and for each depot d ∈ D, if the
depot is close enough to i (Dist(d, i) < ξDDmax), all trips (empty or not) will be
added to η (Lines 6−8). Finally, the neighborhood η is returned and the algorithm
ends (Line 9).
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Algorithm 12: Neighborhood
Input: Solution s, period t and client i
Output: Neighborhood η of client i, for solution s at period t

1 η ← {}; ηmax ←Min(ηmaxi + n−(s), |U | − 1);
2 V ← U \ {i} | ∀Vj , Vk ∈ V, j < k → Dist(i, Vj) < Dist(i, Vk);
3 for i = 1 to ηmax do
4 j ← Vi;
5 if j.served(s, t) and Car(s, t, j).CanService(i) then η ← η ∪ {(j)};
6 foreach d ∈ D, k ∈ K | Dist(d, i) < ξDDmax and k.CanService(i) do
7 foreach l ∈ r, ∀r ∈ stkd do
8 η ← η ∪ {(d, k, l)};

9 return η;

4.3.4 Distance between solutions

The distance between solutions needs to be well-designed for a better population
management, since that the survival selection procedure tends to remove the worst
solutions for each cluster of solutions. So, given two solutions s1 and s2, the distance
between them is defined according to Equation (4.7). It is the sum of the routing
distance ∆r, periodic distance ∆p, fleet distance ∆f , and depot distance ∆d, divided
by the current number of problem attributes na. For the problems considered in this
work, na = 1 for CVRP, na = 2 for HVRP, na = 3 for SDMTPVRP and na = 4 for
the HSDMDMTPVRP.

∆(s1, s2) =
∆r(s1, s2) + ∆p(s1, s2) + ∆f (s1, s2) + ∆d(s1, s2)

na
(4.7)

Each routing, periodic, fleet and depot term in Equation (4.7) belongs to interval
[0, 1]. For example, if ∆r(s1, s2) = 0, both solutions have the same edges. So, if
∆r(s1, s2) = 1, the solutions do not have any edge in common. The periodic distance
∆p is computed in Equation (4.8) where δpis1s2 is equal to 1 if client i is served with the
same delivery pattern in both solutions s1 and s2. The fleet distance ∆f is computed
in Equation (4.9) where sik1 is the number of times that vehicle type k starts a route
serving client i in solution s1. The same valid for sik2 and s2. The depot distribution
distance ∆d is computed in Equation (4.10) where sid1 is the number of times that
depot d starts a route serving client i in solution s1. The same valid for sid2 and s2.
Finally, the routing distance ∆r is calculated by Algorithm 13. Initially it compares
each sorted multiset of edges e(s1) and e(s2) (see Section 4.2.1) by counting the
number of repeated edges S (Lines 3−7), and then calculating and returning the
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routing distance ∆r (Lines 9 and 10).

∆p(s1, s2) =
1

|U |
∑
i∈U

δpis1s2 (4.8)

∆f (s1, s2) =
1

|U |
∑
i∈U

∑
k∈K

|sik1 − sik2 |
2fi

(4.9)

∆d(s1, s2) =
1

|U |
∑
i∈U

∑
d∈D

|sid1 − sid2 |
2fi

(4.10)

Algorithm 13: Routing Distance ∆r(s1, s2)
Input: Solutions s1 and s2
Output: Routing distance between solutions s1 and s2

1 a← e(s1); b← e(s2);
2 S ← 0; i← 1; j ← 1;
3 repeat
4 if ai = aj then
5 S ← S + 1; i← i+ 1; j ← j + 1;
6 else
7 if ai < aj then i← i+ 1 else j ← j + 1;

8 until i > |a| ∨ j > |b|;
9 ∆r ← 1− 2S

|a||b| ;
10 return ∆r;

4.3.5 Population Management

We use the same population management mechanism as the one proposed in VIDAL
et al. [16]. Given a population p, it is responsible for choosing which solutions are
used for the search. The procedure tries to keep the best solutions as well as some
poor ones to provide a population with diversity.

A population p is a set of solutions s. Let µbase be a base size which is the
minimum number of solutions in p, µcurr be the current number of solutions in p

during the search, λ be the generation size, εelite be a proportional of elite solutions,
and εclose be a proportion of the closest solution.

When the maximum size of µbase +λ solutions is reached, it triggers the survival
selection process which keeps an elite set of µelite = dεeliteµbasee solutions based on
cost, and discards λ solutions based in a biased score.

Given a solution s, its biased score is BS(s) according to Equation (4.11) where
CR(s) is the cost rank which is an integer number between [1, µcurr]. A solution
with the best rank (equal to 1) has the best cost value according to Equation (4.4).
Besides, DR(s) is the diversity rank which is calculated for each solution s based
on the average distance ∆(s, s′) (Section 4.3.4) for the µclose = dεcloseµbasee closest
solutions.
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The survival selection process eliminates first the solutions with clones (∆(s, s′) =

0), and then the general population is evaluated. The solution s with the worst
BS(s) is removed. So, CR(s), DR(s) and BS(s) are updated for each remained
solutions in p. This process is repeated until we have µbase solutions left in p.

BS(s) = CR(s) + (1− µelite

µcurr
)DRs (4.11)

4.3.6 Parent Selection and Crossover

The parent selection and crossover are the ones proposed by VIDAL et al. [16]
adapted to the HSDMDMTPVRP and its sub-problems. It selects two parent so-
lutions s1 and s2, and applies a periodic crossover PIX to generate a valid solution
offspring s′.

More specifically, the parent selection process is a dual binary tournament. First,
randomly it selects two solutions from the population and picks the one with higher
biased fitness value as the first parent s1. Thenceforth, this process is repeated to
find parent s2 until there are two different parents.

The PIX crossover is divided in four steps. The first one starts by selecting two
random numbers r1, r2 ∈ [0, 1), with r2 > r1, and then calculates n1 = bnr1c and
n2 = bnr2c where n = |K||T ||D|. After that, it splits A = {{ktd},∀k ∈ K, ∀t ∈
T,∀d ∈ D} into three partitions A1, A2 and A3 with the sizes n1, n2−n1 and n−n2

respectively. The content of each partition is selected randomly. At last, empty
giant tours GTtkd are initialized for each element of {ktd} ∈ A.

The second step handles data from A1 to s′. For each {ktd} ∈ A1, GTtkd ←
gt(s1tkd) copying completely the sequence of visits for the resulting solution (s′).
Now, let ρ ← |gt(s1tkd)| be the size of gt(s1tkd). So, for each {ktd} ∈ A3, it selects
two random numbers r1, r2 ∈ [0, 1], with r2 > r1, and calculates n1 = bρr1c and
n2 = dρr2e. And then, GTtkd ← gt(s1tkd)n1:n2 .

The third step handles data from s2 to s′. For each {ktd} ∈ A2 ∪ A3, let
b = {i|i ∈ gt(s2tkd), i /∈ GTtkd} a set of clients respecting the delivery patterns given
the current client-period distribution of s′ so far, then GTtkd ← GTtkd∪ b. The third
step ends with Algorithm 11 applied to every GTtkd with depot d and vehicle type
k. The resulting partial solution sptkd of Algorithm 11 is added to s′. By the end of
the third step, s′ may not be a valid solution.

The fourth and last step is executed if s′ is not yet a valid solution. This means
that not every client i ∈ U has been served fi times yet. Let L be the multiset of
all clients to be served by s′ randomly sorted. For each client i ∈ L, it is inserted
into the trip that generates the smallest increase in the total solution cost C(s′),
respecting at least one delivery pattern p ∈ Pi and vehicle types in consideration.
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At the end of the fourth step, s′ is a valid solution and the crossover ends.

4.3.7 Removal and Insertion Operators

Let n−1 and n−2 be numbers in interval [0, 1] with n−2 > n−1 . So, a removal operator
o− removes n− ∈ [n−1 |U |, n−2 |U |] clients from a solution s and a insertion operation
o+ inserts them back [57]. In this work, the removal of a client e from solution s

means that e is removed from all of its services throughout the periods. This cycle
is repeated in the Iterated oscillating search (IOS) algorithm (Section 4.3.11).

Algorithm 14 is the framework for the removal process which is used by five
removal operators called RO1, RO2, RO3, RO4 and RO5. We also apply a random
removal operator (RO6) which does not use Algorithm 14. Given a removal operator,
it calls Algorithm 14 and calculates weights based on the current solution s. The
weights are defined according to the heuristic H(s). The Algorithm 14 starts by
sorting the clients according to their weights given by H(s) in increasing order
(Lines 2−3). And then, it selects the number of clients to be removed from s (Line
4). For each client removal (Lines 5−8), the client with index brp|C|c is removed,
where r is a random number in the range [0, 1], and p > 1. Higher values of p
increase the probabilities to select clients with lower weight values. In most removal
operators shown in the literature (see, for example, ROPKE and PISINGER [57]),
Lines 2 and 3 are usually inside the main loop (Lines 5−8). This increases the
time complexity from O(n) to O(n2), increasing the algorithm’s accuracy (for some
cases), however in our experiments, this strategy did not improve the results.

Algorithm 14: Removal Framework
Input: Solution s, weight heuristic H and set U of served clients
Output: Set of removed clients L−

1 L− ← {}; C ← U ;
2 Weights← H(s);
3 Rank ← {i|i ∈ C, ∀j, l ∈ C, j < l→WeightRankj < WeightRankl};
4 n− ← Random(n−1 , n

−
2 )|C|;

5 for i = 1 to n− do
6 r ← Random(0, 1); i← brp|C|c; e← Ranki ;
7 L− ← L− ∪ {e}; C ← C \ {e}; Rank ← Rank \ {e};
8 Remove(s, e);

9 return L−;

For the removal operators, we use three Shaw variants (RO1 and RO2 and RO3),
which are based on SHAW [58], a Average Cost per Unit Transferred (ACUT) re-
moval (RO4), a worst-removal procedure (RO5) and a random removal (RO5). The
Shaw variants try to remove similar clients. The similarity between clients u, v ∈ U
is given by Equation (4.12), where |T | is the number of periods; θ1, θ2 and θ3 are
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positive weights:

Shaw(u, v) = θ1
duv
Dmax

+ θ2
|qu − qv|

Q
+ θ3
|fu − fv|
|T |

. (4.12)

Based on previous Shaw heuristics implementations [62, 63], we used the follow-
ing Shaw variants and θ values:

• Shaw removal (RO1) uses θ1 = 0.6, θ2 = 0.25 and θ3 = 0.10;

• Shaw neighbours removal (RO2) uses θ1 = 1, θ2 = 0.1 and θ3 = 0; and

• Shaw load removal (RO3) uses θ1 = 0, θ2 = 1 and θ3 = 0.

The Average Cost per Unit Transferred (ACUT) removal (RO4) was proposed
by PARASKEVOPOULOS et al. [65]. It gives to each route a cost per load. In
our case, this was adapted and now for each client i, ACUTi is the negative average
value for all routes that serve i (set sri ), defined according to Equation (4.13).

ACUTi =
−1

fi

∑
r∈sri

cfk + cvk
∑

m∈rDist(m, d)∑
m∈r Load(m)

. (4.13)

The Worst removal (RO5) selects and removes clients based on each removal
cost, which is the difference of the solution cost without and with it. In this case,
each client i ∈ U has a assigned weight equals to the average removal cost (always
negative) per service.

The Random removal (RO6) randomly removes n− clients. This operator gen-
erates a poor set of removed clients, but this helps diversifying the search.

Conversely, every insertion operator o+ starts with the set of removed clients L−

and inserts them back into solution s. The insertion operator Φ(u, s) inserts the
client i into the best position of solution s. That is, Φ(i, s) finds the best position
to insert i considering the incremental cost for solution s. All delivery patterns and
neighborhood η(s, t, i) for each period t ∈ T are analysed to define this best position.
Lastly, let C(Φ(i, s)) be the incremental cost for solution s if i is inserted into the
best currently available position and p(Φ(i, s)) be the best delivery pattern for i to
be inserted into s.

The first insertion operator, called Random greedy insertion (IO1), randomly
selects a client i ∈ L− and inserts it into the best position Φ(i, s). This process ends
when all removed clients have been inserted back.

The Partial greedy insertion (IO2), randomly selects a subset of L− of size κ,
which is a parameter called “Greed Level”. Then, IO2 finds i ∈ A | ∀ v ∈ L− ⇒
C(Φ(i, s)) ≤ C(Φ(v, s)) and inserts it into the best position Φ(u, s). This process is
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repeated until all removed clients have been inserted back. As L− decreases in size,
there comes a time when κ > |L−|. From that moment on, κ← |L−|.

Finally, the Partial k-regret insertion (IO3) is based on a k -regret criterion as in
ROPKE and PISINGER [63]. Given a set of removed clients L−, it also randomly
selects a subset of L− of size κ. For each client i ∈ A, the k-best insertion positions
per period are obtained. Each position has a cost increment, and therefore a k-regret
cost can be found for each period t ∈ p(Φ(i, s)). Thus, the k-regret for i is computed
by averaging the k-regret generated for each period defined for the corresponding
best delivery pattern. The client i ∈ A with the largest regret value is than chosen to
be inserted into solution s. Again, there comes a time when κ > |L−|. Thenceforth,
κ← |L−|.

4.3.8 Local search and repair

The local search procedure LocalSearch proposed in this work contains three main
steps: route improvement (RI), delivery pattern improvement (PI) and single swaps
improvement (SI), in which RI and PI were proposed at VIDAL et al. [16]. It
applies sequentially these three steps on a current solution s, with the first one
selected randomly. The algorithm ends when a maximum number of improvements
is reached or if no improvement can be done for solution s.

Step RI tries to improve the total distance travelled by all vehicles per period by
applying swap moves. For a solution s, it starts by sorting in random order the pairs
(u, t), u ∈ U , for those t ∈ T in which client u is served. Then, a pair (u, t) is chosen
at random. For each v ∈ η(s, t, u) all swap moves are tried in a random order. If
any swap move results in a improvement to s, it is applied and RI is terminated.

We use three types of swap moves and all of them need to know the node a ∈ N
(client or depot) which precedes client u and the node b ∈ N which precedes node v.
The first move SM1 tries to swap, if possible, na clients after a with nb clients after
b. The following values are used for (na, nb): (1, 0), (2, 0), (1, 1), (2, 1) and (2, 2).
The second move SM2 requires that u and v are in different routes, and it tries to
swap all the clients after a with all clients after b. The last move SM3 tries to swap
all clients after a with all clients before v. In this case, u and v can be in the same
route. Since the HSDMDMTPVRP and its sub-problems are symmetrical, when na
or nb are larger than 1, all moves check all permutations of the na clients and nb

clients during the swapping process.
Step PI tries to find a better delivery pattern distribution for the clients. In a

random sequence, for each client u ∈ U , u is removed from s and reinserted according
to position Φ(u, s) (Section 4.3.7), generating solution s′. If the cost of solution s′ is
better than the one of solution s, Step PI ends with s← s′. Otherwise, the process
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continues until all clients are evaluated.
Finally, Step SI tries to improve s by swapping clients with single service at

different periods. Let C = {i|i ∈ U, fi = 1} be a set of clients in a random order.
For each client i ∈ C, let Ci = {j|j ∈ C, fi = 1, Dist(i, j) < DmaxξD, i < j, p(s, i) 6=
p(s, j)} be a (neighbor) set of clients for i in a random order. For each client j ∈ Ci,
SI tries to swap i and j. If it improves the solution, the move is kept, otherwise the
process continues with the next neighbor.

The repair procedure Repair uses the local search presented above to try to
find a feasible solution from an infeasible one. As the Repair proposed in [16], the
LocalSearch is applied using 10 times the current penalty weights (Section 4.3.1). If
no feasible solution is found, the LocalSearch is applied again now using 100 times
the current penalty weights.

4.3.9 Initial solution and population

The initial solutions are generated in two phases called Fix and Split, which will
compose the initial population. The Fix phase assigns to each client unit i ∈ U , a
randomly selected delivery pattern p ∈ Pi, a randomly selected vehicle type k ∈ K
and a randomly selected depot d ∈ D. And then, for each period t ∈ p, i is added
to the corresponding giant tour gttkd. In the Split phase, for each period t ∈ T ,
each depot d ∈ D and each vehicle type k ∈ K, the resulting giant tour gttkd, if
not empty, is randomly shuffled and then the Multi Trip Split algorithm (Section
4.3.2) is applied, returning a partial solution sptkd. The set with all resulting partial
solutions sptkd is the initial solution.

The initial population is created in a way that, at the end, we have more diver-
sified solutions as possible. So, it consists of generating 4µbase initial solutions. For
the AVNR, each solution is improved using the LocalSearch procedure limited to
3|U | improvements. For the UHGS, each solution a Repair is applied with proba-
bility Prepair as described at the end of Section 4.3.8 and the resulting solution is
added to the correct population.

Using the survival selection process and the initial population creation, the
UHGS implements a diversification procedure, that consists of reducing µbase to
µbase/3, applying the survival selection process to both populations, restores µbase

to its previous value and then initial population procedure executed. The diversi-
fication process works like a restart mechanism, keeping most of the previous best
solution and introducing a large set of new solutions to the genetic search.

65



4.3.10 Adaptive layer

The search is divided into steps. When a step ends, the weights used to select the
removal and insertion operators are updated based on the score obtained in the last
step, considering the number of times that each operator was used. Initially, all
operators have the same weight.

The score of an operator is increased by a parameter equal to σ1 or σ2 when it
identifies a new solution. If a pair of removal-insertion operator finds a new best
solution, their scores are increased by σ1; diversely, if it finds a solution better than
the current one, their scores are increased by σ2. Thus, the weight φi of operator i
(removal or insertion) is updated by Equation (4.14), where πi is the resulting score,
ξi is the number of times that operator i has been used in the last step, and the
parameter αA is called reaction factor.

φi = (1− αA)φi + αA
πi
ξi
. (4.14)

4.3.11 Iterated oscillating search (IOS)

Considering the ALNS heuristic presented in Section 3.4, the Iterated Oscillating
Search (IOS) is also based on the principle of adaptive destruction and reconstruc-
tion, with spaced local searches and oscillating penalty weights. At each iteration,
IOS selects with a weighted roulette and applies an operator to destroy a solution s
and reconstruct it in a different way, thus generating a new solution s′. If s′ is better
than s, the search continues from s′. The search space oscillates with the penalty
weights, i.e., when the the penalty weights decrease, the search space is expanded,
otherwise, it is reduced.

Algorithm 15 presents the general framework of the IOS implemented in this
work. It receives an initial solution sprom as the promising one, and the maximum
number of iterations N . It then sets sbest, sprom and scurr with very high values. This
means that when compared with any other solution, their costs will be artificially
higher in order to be discarded (Line 1). This strategy is also applied at Line 10,
discarding the solution provided by the local search, in order to diversify the search.

Lines 2−13 constitute the main loop. It starts by defining the auxiliary solution
saux which is modified by the removal and insertion operators selected. Then, solu-
tion sprom is updated (Line 7). If the current iteration is multiple of ρ, a local search
is applied to sprom, generating a new solution saux, and sprom is reset (Line 8−10).

The best solution found sbest is updated in Line 11, and the current solution
scurr is updated in Line 12. If the iteration is multiple of ρ, the penalty weights are
updated (Line 13).

After the main loop, if no feasible solution was found (Line 14), sbest is updated
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and can be repaired with a certain probability; otherwise, if the current solution
scurr has smaller cost than sbest, a repair is applied to scurr and sbest is updated.
Finally, the best solution found sbest is returned.

Algorithm 15: IOS(sprom, N)
Input: Initial Solution sprom and maximum number of iterations N
Output: Best solution found sbest

1 C(sbest)←∞; C(scurr)←∞; C(sprom)←∞;
2 for iteration = 1 to N do
3 saux ← sprom;
4 Select a removal operator o− and apply it to saux;
5 Select a insertion operator o+ and apply it to saux;
6 Update scores πo− and πo+ ;
7 if C(saux) ≤ C(sprom) then sprom ← saux;
8 if iteration is multiple of ρ then
9 saux ← LocalSearch(sprom);

10 C(sprom)←∞;

11 if saux is feasible ∧ C(saux) ≤ C(sbest) then sbest ← saux;
12 if C(saux) ≤ C(scurr) then scurr ← saux;
13 if iteration is multiple of ρ then Update penalty weights with scurr;

14 if C(sbest) =∞ then
15 sbest ← scurr;
16 if Random(0, 1) < Prepair then sbest ← Repair(sbest);
17 else
18 if C(scurr) < C(sbest) then
19 scurr ← Repair(scurr);
20 if scurr is feasible ∧ C(scurr) ≤ C(sbest) then sbest ← scurr;

21 return sbest.

4.3.12 Unified hybrid genetic search

The Unified Hybrid Genetic Search (UHGS) was initially presented in VIDAL et al.
[16] and then adapted to a wide range of vehicle routing problems in VIDAL et al.
[76]. It is based on a Genetic Algorithm (GA) [78] which includes a set of search
mechanisms such as an advanced diversity control, feasibility control and a restart
procedure.

Algorithm 16 details the UHGS. It starts by initializing the penalty weights
(Section 4.3.1) and builds the initial population (Section 4.3.9). The main loop
occurs between lines 2−11 and stops when the time limit is reached. During each
iteration of the main loop, one offspring s′ is generated. The selection of parents and
the crossover algorithm is described in Section 4.3.6. After the crossover algorithm,
the offspring receives an education process, i.e., a LocalSearch is applied on it
(Section 4.3.8). If ′ is not feasible, it is added to the population pinf and may be
repaired with probability Prepair (Lines 4−6). Then, if s′ is feasible, it is added to
the population pfeas. The penalty weights are updated if the current iteration is
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multiple of ρ, as described in Section 4.3.1 (Line 8). At Line 9, the best solution
sbest can be updated by the condition computed at Equation (4.15). It accepts s′

to update sbest if s′ is the first feasible solution found; otherwise, given that s′ and
sbest are feasible (or infeasible) at the same time, it accepts s′ to update sbest if
C(s′) < C(sbest). At the end of each iteration, if sbest did not change in the last
Itrdiv iterations, it triggers the diversification process described in Section 4.3.9.
The algorithm ends at Line 12 returning sbest.

UpdateBS(sbest, s
′) =(Ω(s′) = 0 ∧ Ω(sbest) > 0) ∨ [(C(s′) < C(sbest)∧

(Ω(s′) = 0 ∧ Ω(sbest) = 0) ∨ (Ω(s′) > 0 ∧ Ω(sbest) > 0)]
(4.15)

Algorithm 16: Unified Hybrid Genetic Search
Input: Problem and set of parameters
Output: Best solution found sbest

1 Startup penalty weights and builds the initial populations pfeas and pinf ;
2 repeat
3 s′ ← Select parents, crossover and Educate offspring;
4 if s′ is infeasible then
5 pinf .Add(s′);
6 if Random(0, 1) < Prepair then s′ ← Repair(s′);

7 if s′ is feasible then pfeas.Add(s′);
8 if iteration is multiple of ρ then Updates penalty weights;
9 if UpdateBS(sbest, s

′) then sbest ← s;
10 if sbest did not change in the last Itrdiv iterations then Diversify(pfeas, pinf );
11 until Tcurrent < Tlimit;
12 return sbest.

4.3.13 Adaptive variable neighborhood race

The Adaptive Variable Neighborhood Race (AVNR) is a follow up of the Multi-start
scheme proposed in Section 3.4 and is presented in Algorithm 17. It starts with a
population size µbase, a proportion of elite solutions εelite and a range [n−1 , n

−
2 ], which

is used during the removal and insertion operators. These values are updated linearly
throughout the steps. During each step, the population is doubled by searching
around its solutions as highlighted in Algorithm 15.

Figure 4.3 shows the relationship between the time spent searching around each
solution (Itrstep), and also shows the number of solutions per step, where the gray
ones will be discarded to the next step, based on the survival selection parameters.
As we can see, the AVNR heuristic tries to keep the CPU time constant per step.

Figure 4.4 shows an abstraction of the search space where each point represents
a solution. For each step, the population (i) passes by a survival selection processes
(ii) which discards some solutions (see points marked with a red cross), reducing
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its size. After that, the IOS is applied to each surviving solution (iii), given the
current search parameters, and then the new solutions found (diamonds) are added
to the population.

Figure 4.3: Population size and search length per solution thought the steps for the
AVNR.

Figure 4.4: Search flow for each step in the AVNR.

Algorithm 17 details the AVNR heuristic. The input includes: the final popula-
tion size µbaseF , a range [εelite0 , εeliteF ] for the proportion of elite solutions εelite, a range
[n−10, n

−
1F ] for n−1 , a range [n−20, n

−
2F ] for n−2 , the time limit Tlimit, and the number of

“warm-up” iterations Itrwarm.
The algorithm starts by initializing εelite ← εelite0 , n−1 ← n−10 and n−2 ← n−20 (Line

1). Then, sbest and penalty and operators weights are initialized within the “warm-
up phase” (Line 2). Solution sbest receives a initial solution (Section 4.3.9) which
is updated by applying Algorithm 15 with Itrwarm iterations. After Algorithm
15, the operator weights are updated. So, Itrstep ← ρ; µbase ← µbase0 , which is
computed by Equation (4.16) where Twarm is the CPU time spent during Algorithm
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15; nsteps ← dµbase0 εnµe, where ζ is the proportion between µbase0 and nsteps; and λ is
defined as 2µbase0 .

µbase0 =

⌈√
Itrwarm(Tlimit − Twarm)

ζρTwarm

⌉
(4.16)

After the initial population is built as described at Section 4.3.9 (Line 3), we
have the main loop between Lines 4−11. For each step, µbase, εelite, n−1 and n−2 are
updated by Equation (4.17) within a linear progression. For example, consider εelite.
So, to update it, x is εelite, x0 is εelite0 and xF is εeliteF in Equation (4.17). However,
since that µbase is an integer number, its result must be rounded. Itrstep is also
updated according to Equation 4.18 for step > 1. It is based on the remaining CPU
time (Tlimit − Tcurrent), number of IOS iterations spent in the previous step Nitr,
and CPU time spent in the last step Tstep.

The SelectSurvivals(p) function is executed to shrink p to µbase solutions (Line
6). Then, for each solution s ∈ p (Lines 7−10), Algorithm 15 is applied with Itrstep
iterations, the resulting solution s′ is added to the population p, and the best feasible
solution is updated as long as condition (4.15) is satisfied.

At the end of each step (Line 11), the operator weights are updated and the
number of iterations spent in the current step Nitr ← µbaseItrstep is updated as well.
When the algorithm ends, the best solution found sbest is returned (Line 12).

x← x0 +
step

nstep
(xF − x0) (4.17)

Itrstep ← ρ

⌈
Nitr(Tlimit − Tcurrent)

Tstep(nsteps − step)(ρµbase)

⌉
(4.18)

Algorithm 17: Adaptive Variable Neighborhood Race
Input: Problem and set of parameters
Output: Best feasible solution found sbest

1 Initializes εelite, n−1 and n−2 ;
2 Startup sbest, Itrstep, µbase, λ, nsteps, penalty and operators weights;
3 Build the initial population p;
4 for step = 1 to nsteps do
5 Updates µbase, εelite, n−1 , n

−
2 and Itrstep;

6 SelectSurvivals(p);
7 foreach s ∈ p do
8 s′ ← IOS(s, Itrstep);
9 p.add(s′);

10 if UpdateBS(sbest, s
′) then sbest ← s′;

11 Updates operator and penalty weights and Nitr;

12 return sbest.
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4.4 Computational experiments

This section presents the results of our computational experiments. All heuristics
implemented in this chapter share the same code for all mechanisms presented,
run on a single thread and all CPU times are expressed in minutes. They were
implemented in C programming language using the gcc 10.2 compiler with -O3
option. The computer used in all experiments was an AMD Threadripper 3960x
24c/48t with static clocks @ 4.0Ghz processor, 128GB DDR4 of RAM, running
Ubuntu 20.04 x64 operating system.

4.4.1 Parameters tuning

We used the irace [79] software for tuning the parameters. This software implements
the Iterated Race method, which is a generalization of the Iterated F-race method,
establishing correlations between the variables and the objective function, for the
automatic configuration of optimization algorithms. It also uses restart mechanisms,
truncated sampling distributions to handle correctly parameter bounds, and an eli-
tist racing procedure. We ran 80.000 experiments for tuning each heuristic (UHGS
and AVNR), with a time limit of 5 minutes per execution, 24 simultaneous exper-
iments (one per CPU core), and kept the default values for the remaining irace
parameters.

Besides, we created three instances for tuning different VRP classes: one for
HSDMDMTPVRP, one for PVRP and one for HVRP. After some experiments with
UHGS and AVNR on each one of the tuning instances, each objective function
was normalized by dividing it by its best-known solution value. Thus, the tuning
software was able to optimize the set of parameters equally for each one of the
instances. By the end of the tuning process, the software returns a set of elite
parameters’ configurations.

Lastly, for each elite parameter configuration, UGHS and AVNR was executed
10 times on a second set instances to conclude the tuning phase. This new set
includes one instance (a sample) for each VRP class (CVRP, SDVRP, HVRP, PVRP,
MTVRP, MDVRP, SDMTPVRP and HSDMDMTPVRP) available in literature.
We used a normalized objective function and a time limit of 5 minutes for each test.
The elite parameter configuration with the best average result was chosen.

Tables 4.1 and 4.2 show, for UHGS and AVNR heuristics respectively, each
parameter symbol, description, range of values given to the tuning software (where
a value “-” means that the parameter was not tuned) and the final value chosen.

Analysing the UHGS results (Table 4.1), the tuned parameters values are similar
to the ones used in VIDAL et al. [16], given the similarity between the problems.
Now, taking into account the AVNR results (Table 4.2), it shows that the heuristic
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benefits from a large neighborhood search with a very diverse set of solutions at
the beginning (with high values of n1

0, n2
0 and low εelite0 ), moving towards at a small

neighborhood search with a cost focused search at the end (with low values of n1
F ,

n2
F and high εeliteF ).

Table 4.1: List of parameters and values for the UHGS.
Parameter Description Range Final Value

µbase Base population size [1,200] 25
λ Generation size [1,200] 20
εelite Proportion of elite solutions [0,1] 0.45
εclose Proportion of the closest solutions [0,1] 0.25
ξInf Target proportion of infeasible solutions [0,1] 0.80
Prepair Repair probability [0,1] 0.65
ItrDiv Diversification iteration threshold [500,15000] 4500
ηbase Neighborhood base size [0,50] 45
ξD Proportional distance threshold [0,1] 0.35
ρ Penalty weights update interval - 100

(ω−, ω+) Penalty weights adjustment - (0.75, 1.12)

Table 4.2: List of parameters and values for the AVNR.
Parameter Description Range Final Value

n−10 Initial lower rate of removed clients [0.01,0.50] 0.1
n−1F Final lower rate of removed clients [0.01,0.50] 0.06
n−20 Initial higher rate of removed clients [0.01,0.50] 0.28
n−2F Final higher rate of removed clients [0.01,0.50] 0.11
εelite0 Initial proportion of elite solutions [0,1] 0.19
εeliteF Final proportion of elite solutions [0,1] 0.79
εclose Proportion of the closest solutions [0,1] 0.15
ζ Proportion between µbase0 and nsteps [0.01, 10] 0.7

µbaseF Final base population size [1,50] 14
ξv Violation tolerance [0,0.5] 0,055
ρ Segment size [10,200] 45
αA Adaptivity rate [0,1] 0.15
ηbase Neighborhood base size [0,50] 35
ξD Proportional distance threshold [0,1] 0.18
κ Greed Level -

[
|U |
100

]
Prepair Repair probability - 0.5
w0 Initial adaptive weights - 5

Itrwarmup Initial iteration number - 2000
µbase0 Initial base population size - Equation (4.16)
nsteps Number of steps -

⌈
µbase0 ζ

⌉
(ωb, ωc) Adaptive scores - (15,10)

(ω−, ω+) Penalty weights adjustment - (0.75, 1.12)

The final values of the parameters reported in Tables 4.1 and 4.2 were used to
test all the 414 instances, as shown in the next sections. Since both heuristics were
designed to run at a fixed time limit, the time used in each instance is based on HT

computed by Equation (4.19) and Table 4.3. For example, for an instance having
HT = 55, we used TLimit = 2.5 min.

HT = nts + 10|K|+ 5(|D| − 1) (4.19)

After the parameters tuning, tests were executed in order to evaluate how each
proposed mechanism impacts the AVNR performance for each instance of the second
set of training instances. These results are presented in Appendix B.

72



Table 4.3: Relation between HT and the time limit TLimit.
HT TLimit

[0, 100) 2.5
[100, 150) 5.0
[150, 250) 10.0
[250, 350) 20.0
[350, 450) 30.0
[450, 550) 40.0
[550, 700) 50.0
[700,∞) 60.0

4.4.2 Sets of instances and computational results

We tested all the literature instances related to the VRP subclasses from the HS-
DMDMTPVRP that we have found in literature. It includes 34 instances for the
CVRP, 104 for the MTVRP, 35 for the SDVRP, 42 for the PVRP, 140 for the HVRP,
33 for the MDVRP, 10 for the SDMTPVRP, two real-world instances, and 14 new
instances generated for the HSDMDMTPVRP, totaling 414 instances.

In this section, all tables present the instance data, with name and basic at-
tributes, followed by the literature results, with the best-known solution (BKS)
(indicated with a * if it is the optimal one), and the average solution values and
CPU times for the current best available algorithm. Besides, we show the results
of the UHGS and AVNR heuristics for 10 runs: best solution, average solution and
average number of iterations (column Itr). The last column shows the average CPU
time and the last line reports the percent average deviations to the best-known so-
lutions. The best results are presented in bold. If the BKS is improved, the value
is also underlined.

Table 4.4 shows the results for the Capacitated Vehicle Routing Problem (CVRP)
instances. The CMT1−CMT14 instances were proposed by CHRISTOFIDES et al.
[80] and have 50 − 199 clients, while GWKC1−GWKC20 instances were proposed
by GOLDEN et al. [81] and have 200−483 clients. The literature average results are
presented by NAGATA and BRÄYSY [82] (column NB) considering 10 runs with an
AMD Opteron 6136 CPU. The results are very competitive compared to the current
state-of-the-art for the CVRP. The AVNR provided results on average 0.6% better
than the UHGS and found a new best solution for instance GWKC6. There is a
specific UHGS implementation for the CVRP [16] with an average deviation to BKS
of 0.18%.

Table 4.5 depicts the results for the Site-Dependent Vehicle Routing Problem
(SDVRP) instances. The first set of SDVRP instances, p01−p23, was proposed by
NAG et al. [83], with a range of 52 − 324 clients and 2 − 8 vehicle classes. The
second set of instances, pr01−pr12, was proposed by CHAO et al. [84], with a range
of 48− 1008 clients and 4− 6 vehicle classes. The optimal solutions and best-known
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Table 4.4: Results for the CVRP instances.
Literature UHGS AVNR

Instance |U | BKS NB T(min) Best Average Itr Best Average Itr T(min)
CMT1 50 524.61 524.61 0.1 524.61 524.61 50689 524.61 524.61 2391203 2.5
CMT2 75 835.26 835.61 0.4 835.26 835.26 30507 835.26 835.26 1267661 2.5
CMT3 100 826.14 826.14 0.3 826.14 826.14 21191 826.14 826.14 1675254 5.0
CMT4 150 1028.42 1028.42 1.3 1028.42 1028.42 19147 1028.42 1028.42 1453988 10.0
CMT5 199 1291.45 1291.84 5.0 1297.89 1300.32 10017 1291.71 1292.37 616101 10.0
CMT6 50 555.43 555.43 0.1 555.43 555.43 44769 555.43 555.43 2377650 2.5
CMT7 75 909.68 910.41 0.6 909.68 909.68 19095 909.68 909.68 1086564 2.5
CMT8 100 865.94 865.94 0.4 865.94 865.94 16169 865.94 865.94 1465527 5.0
CMT9 150 1162.55 1162.56 2.3 1162.55 1162.56 19024 1162.55 1162.55 796202 10.0
CMT10 199 1395.85 1398.30 6.5 1397.20 1404.04 9644 1396.89 1398.39 513270 10.0
CMT11 120 1042.11 1042.11 0.4 1042.11 1042.11 14152 1042.11 1042.11 881124 5.0
CMT12 100 819.56 819.56 0.1 819.56 819.56 20475 819.56 819.56 1249976 5.0
CMT13 120 1541.14 1542.99 1.8 1543.12 1544.99 13764 1541.14 1542.47 943036 5.0
CMT14 150 866.37 866.37 0.2 866.37 866.37 16751 866.37 866.37 1058727 5.0
GWKC1 240 5623.47 5632.05 56.6 5631.76 5638.34 11055 5623.47 5625.70 1049444 20.0
GWKC2 320 8404.61 8440.25 28.8 8447.92 8449.12 5384 8410.34 8423.73 595617 20.0
GWKC3 400 11036.20 11036.22 43.4 11036.22 11037.78 4522 11036.22 11037.42 491601 30.0
GWKC4 480 13592.88 13618.55 64.0 13625.72 13627.24 3849 13616.88 13624.90 452795 40.0
GWKC5 200 6460.98 6460.98 2.7 6460.98 6460.98 9245 6460.98 6460.98 1077718 10.0
GWKC6 280 8404.26 8413.41 13.8 8412.90 8412.90 7200 8402.24 8408.10 1040654 20.0
GWKC7 360 10102.70 10186.93 36.3 10195.59 10195.59 6073 10105.76 10117.34 714451 30.0
GWKC8 440 11635.30 11691.54 96.3 11675.20 11695.31 4809 11635.34 11639.02 507329 40.0
GWKC9 255 579.71 581.46 17.4 588.20 589.98 12660 581.46 582.00 912992 20.0
GWKC10 323 736.26 739.56 27.0 752.66 754.79 6931 741.01 743.78 416353 20.0
GWKC11 399 912.84 916.27 39.0 935.78 937.47 6112 917.97 921.28 242699 30.0
GWKC12 483 1102.69 1108.21 59.4 1132.70 1137.72 5127 1114.11 1115.81 208387 40.0
GWKC13 252 857.19 858.42 15.4 865.30 870.44 17472 860.14 860.74 761597 20.0
GWKC14 320 1080.55 1080.84 20.7 1091.57 1101.76 9950 1080.55 1084.43 426800 20.0
GWKC15 396 1337.92 1344.32 31.2 1370.47 1373.35 9136 1348.01 1349.16 333328 30.0
GWKC16 480 1612.50 1622.26 43.6 1661.81 1664.54 7152 1628.02 1631.64 259483 40.0
GWKC17 240 707.76 707.78 9.7 708.88 709.74 13303 707.76 707.80 1063835 20.0
GWKC18 300 995.13 995.91 24.4 1007.81 1010.41 7347 998.31 999.43 334194 20.0
GWKC19 360 1365.60 1366.70 35.3 1385.42 1387.70 6417 1370.01 1371.58 451951 30.0
GWKC20 420 1818.32 1821.65 47.1 1853.82 1861.09 4109 1832.39 1834.16 588169 30.0
Avg. dev. to BKS (%) 0,17 0,71 0,87 0,19 0,27

results were obtained, respectively, in PESSOA et al. [85] and CORDEAU and
MAISCHBERGER [86]. The literature average results are from CORDEAU and
MAISCHBERGER [86] represented in column CM which were obtained with a par-
allel algorithm running on a cluster of 64 computers with Intel Xeon E5 472 CPUs.
The results show better average results for the AVNR which finds the BKS/optimal
solutions in most of the runs and six new best-known solutions.

Tables 4.6 and 4.7 present the results for the Multi Trip Vehicle Routing Problem
(MTVRP) instances structured by TAILLARD et al. [72], based on CVRP instances
with 50−199 clients (CMT1−CMT5, CMT11, CMT12, F11 and F12). The MTVRP
instances are built by limiting M t

k, which can be T 1
H =

[
1.05z∗

m

]
or T 2

H =
[
1.1z∗

m

]
, with

multiples integer values of m. MINGOZZI et al. [87] found 42 optimal solutions
out of the 104 instances. The literature average solution and time results, with an
Intel Xeon 2.8Ghz CPU, are from CATTARUZZA et al. [88] represented by column
CAFV and the value “-” indicates that no feasible solution was found. Our results
show that both heuristics presented in this chapter provide equal or better solutions
than the current best-known ones. For all instances, the AVNR heuristic found
the best-know solution or improved it. Both heuristics found 43 new best-known
solutions: 24 with AVNR and 19 with UHGS and AVNR. For the feasible solutions
found, considering just those instances for which there are known-feasible solutions,
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Table 4.5: Results for the SDVRP Instances.
Literature UHGS AVNR

Instance |U | |K| M r
k BKS CM Best Average Itr Best Average Itr T(min)

p01 55 3 5 640.32* 640.32 640.32 640.32 38991 640.32 640.32 1879440 2.5
p02 52 2 5 598.10* 598.10 598.10 598.10 43228 598.10 598.10 2082747 2.5
p03 80 3 7 954.32* 955.13 954.32 954.58 36516 954.32 954.32 2036316 5.0
p04 76 2 6 854.43* 854.43 854.43 854.43 33986 854.43 854.43 2360199 5.0
p05 103 3 6 1003.57* 1003.57 1003.57 1003.57 24516 1003.57 1003.57 1046836 5.0
p06 104 8 2 1028.52* 1028.83 1028.52 1028.52 25295 1028.52 1028.52 1079839 5.0
p07 27 3 1 391.30* 391.30 391.30 391.30 446700 391.30 391.30 3709092 2.5
p08 54 3 2 664.46* 664.46 664.46 664.46 70646 664.46 664.46 4098183 2.5
p09 81 3 3 948.23* 948.23 948.23 948.23 44777 948.23 948.23 3334235 5.0
p10 108 3 4 1218.75* 1218.75 1218.75 1218.75 30603 1218.75 1218.75 1928655 5.0
p11 135 3 5 1448.17* 1458.35 1448.17 1448.17 47683 1448.17 1448.17 2290676 10.0
p12 162 3 6 1665.55* 1669.84 1665.55 1665.55 31127 1665.55 1665.55 1744259 10.0
p13 54 3 2 1194.18* 1194.18 1194.18 1194.18 74551 1194.18 1194.18 4262449 2.5
p14 108 3 4 1959.96* 1960.03 1959.96 1959.96 25389 1959.96 1959.96 1917915 5.0
p15 162 3 6 2685.09* 2685.09 2685.09 2685.09 24236 2685.09 2685.09 2178632 10.0
p16 216 3 8 3393.31* 3399.42 3396.70 3399.21 28210 3393.31 3394.82 1747682 20.0
p17 270 3 10 4066.15 4088.60 4098.30 4106.18 18561 4071.89 4076.17 744572 20.0
p18 324 3 12 4747.75 4784.51 4792.17 4802.54 17739 4753.56 4757.09 761012 30.0
p19 104 3 4 843.15* 848.27 843.15 843.15 27287 843.15 843.15 1412174 5.0
p20 156 3 6 1030.78* 1033.98 1030.78 1030.78 22674 1030.78 1030.78 1677981 10.0
p21 209 3 9 1260.01* 1268.06 1262.49 1269.56 11842 1260.01 1262.77 721376 10.0
p22 122 3 3 1008.71* 1008.71 1008.71 1008.71 30903 1008.71 1008.71 2092864 10.0
p23 102 3 4 803.29* 803.29 803.29 803.29 25737 803.29 803.29 1666776 5.0
pr01 48 4 1 1380.77 1380.77 1380.77 1380.77 117874 1380.77 1380.77 4334073 2.5
pr02 96 4 2 2303.90 2306.92 2303.90 2303.90 31769 2303.90 2303.90 1018434 5.0
pr03 144 4 3 2575.36 2575.51 2574.56 2575.33 30229 2574.56 2574.89 1998293 10.0
pr04 192 4 4 3449.84 3454.90 3459.70 3464.91 12801 3449.84 3452.92 831172 10.0
pr05 240 4 5 4352.84 4377.35 4376.03 4379.56 20443 4375.67 4375.67 1200827 20.0
pr06 288 4 6 4422.02 4445.85 4433.11 4460.18 12888 4406.35 4414.40 928160 20.0
pr07 72 6 1 1889.82 1889.82 1889.82 1889.82 53445 1889.82 1889.82 3752527 5.0
pr08 144 6 2 2971.01 2977.06 2969.92 2972.35 34418 2969.92 2969.92 1925842 10.0
pr09 216 6 3 3536.20 3558.12 3538.25 3538.72 29797 3536.20 3536.20 2635914 20.0
pr10 288 6 4 4639.62 4666.01 4650.90 4663.27 22976 4627.66 4634.56 1439997 30.0
pr11 1008 4 21 12719.65 12939.70 13235.62 13268.32 1780 12891.11 13091.74 83682 60.0
pr12 720 6 10 9388.07 9460.36 9623.17 9656.12 5161 9350.55 9445.48 230420 60.0
Average dev. to BKS (%) 0.26 0.27 0.35 0.01 0.11

AVNR found feasible solutions in all runs, and UHGS did not found feasible solutions
in 5 of 10 runs for the CMT2-6-146, 9 of 10 runs for the CMT4-7-154, 1 of 10 runs
for the CMT4-8-135, and 8 of 10 runs for the CMT5-10-136. The infeasible results
were discarded from all average results.

Table 4.8 depicts the results for the most tested instances of the Heterogeneous
Vehicle Routing Problem (HVRP). We considered four groups of instances: the
“VFMP-F”, which were the first instances proposed in the literature by GOLDEN
et al. [71], comprising 20− 100 clients and 3− 6 vehicle types, and their variations
“VFMP-V”, “VFMP-FV’ and “HVRP”, created by TAILLARD [89]. All best-known
solutions were proven to be optimal in PESSOA et al. [85]. The literature average so-
lution and time results, with an Intel Core i7-870 CPU, for 30 runs are from PENNA
et al. [90] and are represented at column PSO. The results show a good performance
of both AVNR and UHGS algorithms, with the worst performance of 0.12% from
the optimal values found by AVNR, with a clear advantage for the UHGS. There
is a specific UHGS implementation for the HVRP [76], for the instances tested in
both works, which presents an identical average deviation to BKS of 0.028%.

Considering that the modern heuristics are able to consistently find the optimal
solutions for the classic HVRP instances (Table 4.8), a second set of instances,
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Table 4.6: Results for the MTVRP instances - Part 1.
Literature UHGS AVNR

Instance |U | m M t
k BKS CAFV T(min) Best Average Itr Best Average Itr T(min)

CMT1 50

1 551 524.61* 524.61 0.50 524.61 524.61 33817 524.61 524.61 3584618 2.5
2 275 533.00* 533.00 0.50 533.00 533.00 26057 533.00 533.00 2253806 2.5
3 184 - - 0.50 - 21960 - - 1598231 2.5
4 138 - - 0.50 - 5495 - - 1395486 2.5
1 577 524.61* 524.61 0.50 524.61 524.61 33830 524.61 524.61 3300213 2.5
2 289 529.85* 530.67 0.50 529.85 529.85 26489 529.85 529.85 3483107 2.5
3 192 552.68 552.68 0.50 552.68 552.68 23778 552.68 552.68 3752873 2.5
4 144 546.29* 546.29 0.50 546.29 546.29 22517 546.29 546.29 3129100 2.5

CMT2 75

1 877 835.26* 838.40 2.0 835.26 835.26 18715 835.26 835.26 1804599 2.5
2 439 835.26* 838.59 2.0 835.26 835.26 17071 835.26 835.26 2001082 2.5
3 292 835.26* 838.58 2.0 835.26 835.26 15936 835.26 835.26 1864314 2.5
4 219 835.26* 839.77 2.0 835.26 835.26 14760 835.26 835.26 1663617 2.5
5 175 835.80* 836.52 2.0 835.80 836.11 14503 835.80 835.80 2039718 2.5
6 146 858.58 859.42 2.0 857.00 857.52 5347 855.34 856.61 978881 2.5
7 125 - - 2.0 - - 5400 - - 919385 2.5
1 919 835.26* 835.48 2.0 835.26 835.26 18974 835.26 835.26 2115342 2.5
2 459 835.26* 836.46 2.0 835.26 835.26 17826 835.26 835.26 1632817 2.5
3 306 835.26* 837.40 2.0 835.26 835.26 17479 835.26 835.26 1647409 2.5
4 230 835.26* 837.73 2.0 835.26 835.26 16124 835.26 835.26 1965753 2.5
5 184 835.26* 837.99 2.0 835.26 835.26 15886 835.26 835.26 1858193 2.5
6 153 839.22* 846.02 2.0 839.22 839.22 12392 839.22 839.22 1620253 2.5
7 131 844.70 854.70 2.0 844.54 844.61 11397 844.54 844.54 1619950 2.5

CMT3 100

1 867 826.14* 827.96 2.9 826.14 826.14 18377 826.14 826.14 2049129 2.5
2 434 826.14* 827.75 2.9 826.14 826.14 16882 826.14 826.14 1968302 5.0
3 289 826.14* 828.53 2.9 826.14 826.14 15766 826.14 826.14 1877735 5.0
4 217 829.45 829.45 2.9 828.74 828.74 15115 828.74 828.74 1707872 5.0
5 173 832.89 843.72 2.9 832.88 832.88 10440 832.88 832.88 1781880 5.0
6 145 836.22 836.22 2.9 835.54 835.54 13783 835.54 835.61 1688057 5.0
1 909 826.14* 829.53 2.9 826.14 826.14 19104 826.14 826.14 2080292 5.0
2 454 826.14* 827.96 2.9 826.14 826.14 17841 826.14 826.14 1994452 5.0
3 303 826.14* 829.09 2.9 826.14 826.14 16652 826.14 826.14 1975760 5.0
4 227 826.14* 827.55 2.9 826.14 826.14 16125 826.14 826.14 1939159 5.0
5 182 832.34 832.88 2.9 831.20 831.20 12935 831.20 831.20 1615966 5.0
6 151 834.35 834.35 2.9 833.98 834.02 13078 833.98 834.05 1687561 5.0

CMT4 150

1 1080 1031.00 1034.22 8.2 1028.42 1028.42 16857 1028.42 1028.42 1998796 5.0
2 540 1031.07 1037.89 8.2 1028.42 1028.42 15085 1028.42 1028.42 1826756 10.0
3 360 1028.42 1032.79 8.2 1028.42 1028.46 14578 1028.42 1028.42 1830993 10.0
4 270 1031.10 1037.09 8.2 1028.42 1028.42 13898 1028.42 1028.42 1763895 10.0
5 216 1031.07 1037.41 8.2 1028.42 1028.42 13665 1028.42 1028.42 1710040 10.0
6 180 1034.61 1041.82 8.2 1032.40 1032.95 10629 1032.40 1033.13 1557258 10.0
7 154 1068.59 1068.59 8.2 1070.12 1070.12 5370 1056.86 1059.45 922090 10.0
8 135 1056.54 1059.68 8.2 1056.61 1057.78 5423 1055.83 1055.83 1463688 10.0
1 1131 1031.07 1038.77 8.2 1028.42 1028.49 15570 1028.42 1028.42 1962381 10.0
2 566 1030.45 1040.39 8.2 1028.42 1028.46 14785 1028.42 1028.42 1929766 10.0
3 377 1031.59 1032.92 8.2 1028.42 1028.42 14359 1028.42 1028.42 1839270 10.0
4 283 1031.07 1036.33 8.2 1028.42 1028.50 14018 1028.42 1028.42 1861834 10.0
5 226 1030.86 1035.52 8.2 1028.42 1028.56 13555 1028.42 1028.42 1863797 10.0
6 189 1030.45 1037.10 8.2 1029.56 1029.73 12612 1029.56 1029.56 1633114 10.0
7 162 1036.08 1043.60 8.2 1032.07 1033.32 9819 1032.07 1032.72 1566709 10.0
8 141 1044.32 1048.08 8.2 1044.32 1044.32 10046 1043.70 1043.90 1616249 10.0

named HVRP DLP, was proposed by DUHAMEL et al. [91], representing real-world
cases based on 96 French counties, yielding larger instances, comprising 20 − 256

clients and 2− 8 vehicle types. Tables 4.9 and 4.10 show the results for the HVRP
DLP instances. The best-known results are from DUHAMEL et al. [91] and the
average literature solution and CPU time results, using an Intel Xeon 2.80 Ghz
CPU, are from the algorithm “GRASP x ELS with BFS split” since it had the better
average performance, presented at column DLP [91]. The authors only reported
the best solutions out of multiple runs. The results show that UHGS and AVNR
achieve better performance than “GRASP x ELS with BFS split” in the several
instances. The AVNR heuristic outperformed UGHS in most cases. Considering all
96 instances, our heuristics found the best-known solutions or improved them. We
found 12 previous best-known solutions and 84 new best-known solutions: 62 with
AVNR, 7 with UHGS, and the 15 remaining ones with both.
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Table 4.7: Results for the MTVRP instances - Part 2.
Literature UHGS AVNR

Instance |U | m M t
k BKS CAFV T(min) Best Average Itr Best Average Itr T(min)

CMT5 199

1 1356 1302.43 1308.27 21.4 1336.15 1341.34 4436 1294.25 1295.97 877113 10.0
2 678 1302.15 1309.66 21.4 1296.83 1299.77 6966 1292.11 1293.43 835534 10.0
3 452 1301.29 1307.85 21.4 1297.80 1300.89 6682 1293.66 1295.45 810799 10.0
4 339 1304.78 1308.07 21.4 1295.24 1300.49 6409 1291.45 1293.67 818758 10.0
5 271 1300.02 1307.10 21.4 1298.94 1300.87 6139 1291.50 1294.59 758480 10.0
6 226 1303.37 1311.16 21.4 1294.17 1299.43 6011 1293.36 1295.97 758300 10.0
7 194 1309.40 1313.06 21.4 1295.72 1301.39 5832 1291.50 1296.53 761678 10.0
8 170 1303.91 1308.98 21.4 1296.83 1299.26 5625 1291.71 1296.19 789053 10.0
9 151 1307.93 1317.03 21.4 1307.67 1322.30 4163 1296.65 1305.35 706289 10.0
10 136 1323.01 1329.00 21.4 1336.39 1336.39 4034 1304.45 1314.47 600225 10.0
1 1421 1299.86 1310.43 21.4 1339.88 1343.71 6090 1294.52 1296.38 885184 10.0
2 710 1305.35 1314.05 21.4 1297.82 1301.97 7196 1292.36 1294.19 873938 10.0
3 474 1301.03 1310.93 21.4 1296.04 1302.45 7102 1291.71 1293.35 786245 10.0
4 355 1303.65 1312.40 21.4 1301.12 1302.81 6974 1291.50 1294.51 792777 10.0
5 284 1300.62 1308.75 21.4 1299.20 1301.37 6901 1291.74 1294.46 797497 10.0
6 237 1306.17 1311.40 21.4 1299.87 1304.85 6706 1291.66 1295.35 782279 10.0
7 203 1301.54 1313.66 21.4 1298.97 1302.26 6628 1293.64 1295.83 808449 10.0
8 178 1308.78 1310.61 21.4 1297.62 1302.41 6414 1292.59 1295.03 793204 10.0
9 158 1307.25 1311.32 21.4 1300.96 1304.61 5898 1291.50 1293.49 765429 10.0
10 142 1308.81 1316.80 21.4 1302.35 1308.42 5147 1291.45 1297.20 771710 10.0

CMT11 120

1 1094 1042.11* 1042.11 5.0 1042.11 1042.11 13314 1042.11 1042.11 1030810 5.0
2 547 1042.11* 1042.11 5.0 1042.11 1042.11 12351 1042.11 1042.11 981852 5.0
3 365 1042.11* 1042.11 5.0 1042.11 1042.11 12205 1042.11 1042.11 1008183 5.0
4 274 1078.64 1080.38 5.0 1078.64 1078.73 9800 1078.64 1078.64 706239 5.0
5 219 1042.11* 1042.11 5.0 1042.11 1042.11 11827 1042.11 1042.11 960665 5.0
1 1146 1042.11* 1042.11 5.0 1042.11 1042.11 13457 1042.11 1042.11 1024183 5.0
2 573 1042.11* 1042.11 5.0 1042.11 1042.11 12882 1042.11 1042.11 1025362 5.0
3 382 1042.11* 1042.11 5.0 1042.11 1042.11 12242 1042.11 1042.11 1007836 5.0
4 287 1042.11* 1042.11 5.0 1042.11 1042.11 11809 1042.11 1042.11 1025016 5.0
5 229 1042.11* 1042.11 5.0 1042.11 1042.11 12113 1042.11 1042.11 1004847 5.0

CMT12 100

1 861 819.56* 819.56 2.3 819.56 819.56 20257 819.56 819.56 1539639 5.0
2 430 819.56* 819.56 2.3 819.56 819.56 19246 819.56 819.56 1474878 5.0
3 287 819.56* 819.56 2.3 819.56 819.56 18383 819.56 819.56 1476092 5.0
4 215 819.56* 819.56 2.3 819.56 819.56 17852 819.56 819.56 1532883 5.0
5 172 845.56 847.73 2.3 845.37 845.37 11982 845.37 845.37 1296097 5.0
6 143 - - 2.3 - - 5460 - - 334742 5.0
1 902 819.56* 819.56 2.3 819.56 819.56 20433 819.56 819.56 1553969 5.0
2 451 819.56* 819.56 2.3 819.56 819.56 19538 819.56 819.56 1517073 5.0
3 301 819.56* 819.56 2.3 819.56 819.56 19180 819.56 819.56 1520691 5.0
4 225 819.56* 819.56 2.3 819.56 819.56 18344 819.56 819.56 1495356 5.0
5 180 824.78* 824.78 2.3 824.78 824.78 16576 824.78 824.78 1479084 5.0
6 150 823.14* 823.15 2.3 823.14 823.15 16300 823.14 823.15 1586380 5.0

F11 71

1 254 241.97 241.97 0.7 241.97 241.97 22348 241.97 241.97 2529825 2.5
2 127 250.85 250.85 0.7 250.85 250.85 16151 250.85 250.85 2926551 2.5
3 85 - - 0.7 - - 15437 - - 1082011 2.5
1 266 241.97 241.97 0.7 241.97 241.97 23187 241.97 241.97 2627013 2.5
2 133 241.97 241.97 0.7 241.97 241.97 21187 241.97 241.97 2392507 2.5
3 89 254.07 254.07 0.7 254.07 254.07 15102 254.07 254.07 2247250 2.5

F12 134

1 1221 1162.96 1162.96 2.7 1162.96 1162.96 8096 1162.96 1162.96 520826 5.0
2 611 1162.96 1162.96 2.7 1162.96 1162.96 7656 1162.96 1162.96 507103 5.0
3 407 1162.96 1162.96 2.7 1162.96 1162.96 7407 1162.96 1162.96 486850 5.0
1 1279 1162.96 1162.96 2.7 1162.96 1162.96 8397 1162.96 1162.96 542838 5.0
2 640 1162.96 1162.96 2.7 1162.96 1162.96 7978 1162.96 1162.96 510942 5.0
3 426 1162.96 1162.96 2.7 1162.96 1162.96 7646 1162.96 1162.96 501940 5.0

Average dev. to BKS (%) 0,28 -0,04 0,02 -0,23 -0,17

Table 4.11 presents the results for two groups of instances of the Periodic Vehicle
Routing Problem (PVRP). The first group, p01−p32, represents instances proposed
in four papers: p1−p10 was presented in CHRISTOFIDES and BEASLEY [92],
p11 in RUSSELL and IGO [93], p12 and p13 in RUSSELL and GRIBBIN [94],
and p14−p32 in CHAO et al. [95]. The second group of instances, pr01−pr10, was
proposed by CORDEAU et al. [70]. The main difference from the first group is
that the second one has a total time limit per route. The solutions highlighted
as optimal in Table 4.11 were retrieved from BALDACCI et al. [41], and the best
literature average results for 10 runs are from VIDAL et al. [16], that is a specific
UHGS implementation, which are presented at column VCGLR. The results reveal a
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Table 4.8: Results for the HVRP classic instances.
Literature UHGS AVNR

Instance |U | |K| Optimal PSO T(min) Best Average Itr Best Average Itr T(min)
HVRP-13 50 6 1517.84 1518.58 0.3 1517.84 1517.84 70946 1517.84 1517.84 1978503 5.0
HVRP-14 50 3 607.53 607.64 0.2 607.53 607.53 36041 607.53 607.53 2131040 2.5
HVRP-15 50 3 1015.29 1015.33 0.2 1015.29 1015.29 43383 1015.29 1015.29 3350159.5 2.5
HVRP-16 50 3 1144.94 1145.04 0.2 1144.94 1144.94 34849 1144.94 1144.94 1844147 2.5
HVRP-17 75 4 1061.96 1065.27 0.5 1061.96 1061.96 39479 1061.96 1061.96 1950303.5 5.0
HVRP-18 75 6 1823.58 1832.52 0.6 1823.58 1823.58 25552 1823.58 1823.58 2129748 5.0
HVRP-19 100 3 1120.30 1120.34 1.1 1120.34 1120.34 15834 1120.34 1120.34 1931483.5 5.0
HVRP-20 100 3 1534.17 1544.08 1.1 1534.17 1534.17 16588 1534.17 1534.17 1203288 5.0
VFMP-F-03 20 5 961.03 961.10 0.1 961.03 961.03 187541 961.03 961.03 2078307 2.5
VFMP-F-04 20 3 6437.33 6437.63 0.1 6437.33 6437.33 295117 6437.33 6437.33 6135141 2.5
VFMP-F-05 20 5 1007.05 1007.05 0.1 1007.05 1007.05 356746 1007.05 1007.05 5449813 2.5
VFMP-F-06 20 3 6516.47 6516.47 0.1 6516.47 6516.47 142215 6516.47 6516.47 2177246 2.5
VFMP-F-13 50 6 2406.36 2419.38 0.5 2406.36 2406.36 42160 2408.41 2412.43 1896386.5 5.0
VFMP-F-14 50 3 9119.03 9119.03 0.2 9119.03 9119.03 37143 9119.03 9119.03 3219886 2.5
VFMP-F-15 50 3 2586.37 2586.80 0.3 2586.37 2586.37 30456 2586.37 2586.42 1669057 2.5
VFMP-F-16 50 3 2720.43 2737.59 0.3 2720.43 2720.43 42204 2720.43 2720.43 2761459.5 2.5
VFMP-F-17 75 4 1734.53 1748.06 0.9 1734.53 1734.53 25095 1744.93 1754.80 1715899.5 5.0
VFMP-F-18 75 6 2369.65 2380.98 0.9 2376.16 2376.77 32048 2369.65 2373.88 1350516 5.0
VFMP-F-19 100 3 8661.81 8665.31 1.1 8668.23 8672.46 15672 8662.86 8681.73 1456241 5.0
VFMP-F-20 100 3 4029.61 4051.11 1.6 4039.30 4043.11 15302 4037.90 4042.89 1164344 5.0
VFMP-FV-03 20 5 1144.22 1144.22 0.1 1144.22 1144.22 406668 1144.22 1144.22 4283056.5 2.5
VFMP-FV-04 20 3 6437.33 6437.66 0.1 6437.33 6437.33 291212 6437.33 6437.33 6330658 2.5
VFMP-FV-05 20 5 1322.26 1322.26 0.1 1322.26 1322.26 194743 1322.26 1322.26 1688400.5 2.5
VFMP-FV-06 20 3 6516.47 6516.47 0.1 6516.47 6516.47 139108 6516.47 6516.47 2268770.5 2.5
VFMP-FV-13 50 6 2964.65 2971.32 0.5 2964.65 2964.65 96280 2964.65 2970.28 3028852.5 5.0
VFMP-FV-14 50 3 9126.90 9126.91 0.2 9126.90 9126.90 29816 9126.90 9126.90 1991671 2.5
VFMP-FV-15 50 3 2634.96 2635.02 0.2 2634.96 2634.96 63680 2634.96 2634.96 2795710.5 2.5
VFMP-FV-16 50 3 3168.92 3170.81 0.3 3168.92 3168.92 36757 3168.92 3168.92 1691732 2.5
VFMP-FV-17 75 4 2004.48 2012.23 0.7 2004.48 2004.48 25088 2011.12 2014.83 1764234 5.0
VFMP-FV-18 75 6 3147.99 3158.24 0.8 3148.99 3148.99 40011 3148.99 3161.99 1598615 5.0
VFMP-FV-19 100 3 8661.81 8664.81 1.0 8668.41 8673.32 16470 8662.86 8662.86 1108329.5 5.0
VFMP-FV-20 100 3 4153.02 4155.90 1.0 4154.20 4154.76 19178 4217.44 4241.57 1014648 5.0
VFMP-V-03 20 5 623.22 623.22 0.1 623.22 623.22 465862 623.22 623.22 4099450 2.5
VFMP-V-04 20 3 387.18 387.18 0.0 387.18 387.18 210554 387.18 387.18 2336193.5 2.5
VFMP-V-05 20 5 742.87 742.87 0.1 742.87 742.87 226824 742.87 742.87 2533396 2.5
VFMP-V-06 20 3 415.03 415.03 0.1 415.03 415.03 398414 415.03 415.03 5397642 2.5
VFMP-V-13 50 6 1491.86 1495.61 0.5 1491.86 1491.86 77293 1491.86 1491.86 2399844.5 5.0
VFMP-V-14 50 3 603.21 603.21 0.2 603.21 603.21 47567 603.21 603.21 3353470.5 2.5
VFMP-V-15 50 3 999.82 1001.70 0.3 999.82 999.82 48894 999.82 999.82 3084219 2.5
VFMP-V-16 50 3 1131.00 1134.52 0.3 1131.00 1131.00 50617 1131.00 1131.00 3124091 2.5
VFMP-V-17 75 4 1038.60 1041.12 0.8 1038.60 1038.60 38467 1038.60 1038.60 2033575 5.0
VFMP-V-18 75 6 1800.80 1804.07 0.9 1800.80 1800.80 25559 1800.80 1800.86 2450636.5 5.0
VFMP-V-19 100 3 1105.44 1108.21 1.3 1105.44 1105.44 23275 1105.44 1105.44 1476577.5 5.0
VFMP-V-20 100 3 1530.43 1540.32 1.5 1530.52 1530.52 16913 1530.43 1530.45 1250411.5 5.0
Average dev. to BKS (%) 0.176 0.017 0.022 0.064 0.124

good performance for both UGHS and AVNR heuristics. UGHS provided the worst
performance, which is 0.76% far from the best-known results. Although VCGLR
provided a good average deviation (0.43%) from the best-known results, AVNR was
the best heuristic with an average deviation of 0.26%.

Table 4.12 shows the results for the Multi-Depot Vehicle Routing Problem (MD-
VRP) instances proposed by CORDEAU et al. [70], which have 50−288 clients and
2 − 6 depots. The marked known-optimal solutions and best known-solutions are,
respectively, from PESSOA et al. [85] and CHRISTIAENS and VANDEN BERGHE
[96]. The literature average solution and CPU time results, with an AMD Opteron
250 CPU, for 10 runs are from CHRISTIAENS and VANDEN BERGHE [96] and
are presented at column CB. Similarly to the HVRP Classic results, the modern
MDVRP heuristics provide a good performance, finding solutions very close to the
best-known ones. The UHGS heuristic had the worst performance, ie., a average
deviation of 0.10% from the best-known results. In general, the AVNR heuristic
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Table 4.9: Results for the HVRP DLP instances. - Part 1
Literature UHGS AVNR

Instance |U | |K| BKS DLP T(min) Best Average Itr Best Average Itr T(min)
01 92 4 9210,14 9210,14 0.9 9210.14 9210.81 17041 9210.14 9210.14 838831 5.0
02 181 4 11735,97 11735,97 16.6 11764.54 11793.60 8412 11716.59 11798.20 700410 10.0
03 124 4 10828,83 10828,83 7.4 10760.90 10772.38 19319 10726.70 10753.43 1745495 10.0
04 183 4 10891,18 10891,18 15.7 10829.99 10857.47 8606 10741.63 10776.95 505978 10.0
05 116 5 10939,58 10939,58 6.8 10891.24 10901.42 23875 10869.04 10913.90 1460149 10.0
06 121 8 11783,83 12296,4 6.0 11838.66 11864.06 19294 11700.06 11805.24 1795682 10.0
07 108 4 8117,44 8117,44 3.3 8089.65 8103.38 28153 8071.97 8077.69 1692372 10.0
08 84 3 4598,49 4598,49 5.1 4594.07 4596.08 25837 4591.75 4592.01 1276535 5.0
09 167 5 7728,34 7734,83 10.6 7717.24 7733.33 10876 7660.54 7688.97 1899838 10.0
10 69 4 2107,55 2107,55 0.4 2107.55 2107.55 29546 2107.55 2107.55 2033575 5.0
11 95 4 3370,47 3370,47 4.4 3367.41 3367.41 19424 3367.41 3367.41 1110463 5.0
12 112 4 3543,99 3543,99 4.4 3543.99 3543.99 20044 3543.99 3543.99 2389203 10.0
13 119 5 6716,69 6770,99 8.6 6696.43 6697.38 26263 6696.43 6697.01 1240278 10.0
14 176 4 5673,90 5706,42 7.1 5738.74 5751.09 8160 5672.10 5700.47 683234 10.0
15 188 7 8282,56 8282,56 15.4 8309.69 8350.07 19218 8208.59 8237.10 1658158 20.0
16 129 6 4156,97 4156,97 3.1 4156.97 4156.97 19782 4156.97 4156.97 975292 10.0
17 105 3 5370,05 5378,52 5.5 5367.48 5368.64 11865 5362.83 5365.44 711486 5.0
18 256 5 9783,95 9832,84 18.3 9733.33 9782.77 7403 9670.00 9727.28 822151 20.0
19 224 5 11875,83 11899,61 24.4 11774.47 11793.12 12771 11754.92 11789.90 1139686 20.0
21 126 3 5175,03 5175,03 10.3 5139.84 5139.84 24861 5139.84 5139.84 1395576 10.0
22 239 2 13129,61 13129,61 16.1 13114.91 13143.75 12362 13100.66 13123.90 1504221 20.0
23 203 4 7822,02 7822,02 19.2 7828.49 7841.56 6469 7745.49 7768.41 600190 10.0
24 163 4 9192,93 9226,5 6.9 9131.55 9146.91 11404 9116.20 9136.13 1258146 10.0
25 143 6 7274,26 7274,26 10.4 7134.69 7196.58 14536 7143.38 7172.67 986317 10.0
26 126 5 6501,16 6501,16 7.6 6415.71 6423.08 20285 6428.66 6451.94 1234330 10.0
27 220 5 8514,25 8514,25 24.2 8467.44 8488.86 12518 8449.92 8489.52 938078 20.0
28 141 5 5555,15 6486,58 5.5 5532.61 5537.28 20093 5534.47 5546.95 1336312 10.0
29 164 4 9170,59 9170,59 12.0 9150.30 9158.84 15048 9135.66 9144.15 1121601 10.0
2A 113 6 7856,67 7856,67 8.8 7793.16 7793.98 26503 7793.16 7822.39 1151243 10.0
2B 107 6 8535,50 8702,25 2.0 8453.35 8457.26 29347 8463.90 8487.02 1742946 10.0
30 112 3 6349,53 6354,96 2.6 6315.51 6344.09 14317 6320.76 6333.66 813132 5.0
31 131 8 4091,81 4141,78 5.0 4091.52 4091.52 19128 4091.52 4091.52 1083799 10.0
32 244 8 9510,03 9606,39 27.3 9450.18 9508.17 9426 9367.64 9423.66 676057 20.0
33 189 7 9494,43 9494,43 6.1 9417.79 9471.66 14394 9411.01 9437.02 956449 20.0
34 136 6 5803,68 5854,57 5.0 5755.99 5770.48 16424 5752.99 5768.57 921064 10.0
35 168 6 9625,28 9848,4 11.1 9683.21 9697.46 10710 9566.61 9623.13 1036831 10.0
36 85 6 5752,34 5759,34 1.7 5684.61 5685.07 25482 5684.61 5684.61 1444626 5.0
37 161 5 6920,07 6967,63 14.8 6935.31 6947.64 12321 6867.35 6894.84 1032612 10.0
38 205 5 11371,83 11474,18 20.3 11293.52 11321.32 11424 11265.96 11315.94 1762036 20.0
39 77 5 2934,55 2934,55 3.0 2918.87 2919.18 31838 2918.87 2918.87 1439900 5.0
40 132 5 11178,31 11225,34 10.6 11201.94 11234.79 17684 11122.37 11153.32 2040287 10.0
41 135 7 7629,55 7676,85 8.9 7562.31 7577.50 15713 7553.08 7556.41 804038 10.0
42 178 7 11068,07 11068,07 20.7 10770.66 10789.91 18127 10762.59 10793.96 1035175 20.0
43 86 7 8762,60 8764,75 3.7 8737.02 8737.02 40710 8737.02 8737.02 2389595 10.0
44 172 3 12459,77 12459,77 14.5 12199.97 12228.13 12156 12171.02 12181.82 965244 10.0
45 170 3 10515,01 10515,01 4.6 10561.33 10601.84 9776 10428.57 10459.74 661800 10.0
46 250 5 24751,07 24751,07 18.8 24537.34 24615.45 8950 24315.07 24446.54 516903 20.0

was better than all approaches, finding the best-known solutions for all instances,
except for p08 and pr10. There is a specific UHGS implementation for the CVRP
[16] with an average deviation to BKS of 0.09%.

Table 4.13 presents the results for the Site Dependant Multi-trip Periodic Vehi-
cle Routing Problem (SDMTPVRP), proposed by ALONSO et al. [75], comprising
50−1000 clients, 2−6 periods, and 2−13 vehicle types. The best-known solutions,
averages and CPU time results, with an Intel Pentium 4 1.6Ghz CPU, for 10 runs
found in [75] are reported in Table 4.13 by columns BKS, AAB and T(min), respec-
tively. Again, the results found by UHGS and AVNR heuristics were very good:
AVNR found eight new best solutions and UHGS one. Besides, AVNR has the best
overall results, as shown in the last line of Table 4.13.

The last computational experiments comprise a set of 14 instances proposed for
the Heterogeneous Site-Dependent Multi-depot Multi-trip Periodic Vehicle Routing
Problem (HSDMDMTPVRP), which are based on a real-world case coming from
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Table 4.10: Results for the HVRP DLP Instances. - Part 2
Literature UHGS AVNR

Instance |U | |K| BKS DLP T(min) Best Average Itr Best Average Itr T(min)
47 111 5 16290,51 16290,51 5.4 16156.11 16165.68 27225 16156.11 16156.11 1740633 10,0
48 111 5 21470,94 21470,94 6.1 21257.38 21291.38 24870 21257.38 21280.88 1530657 10,0
49 246 8 16302,37 16302,37 38.3 16417.76 16476.04 6753 16118.25 16191.00 446612 20,0
50 187 6 12510,95 12510,95 12.3 12317.41 12334.25 15593 12295.77 12336.81 914315 20,0
51 129 3 7797,58 7797,58 5.4 7721.47 7722.24 20034 7721.47 7737.79 1151670 10,0
52 59 3 4029,42 4029,42 0.7 4027.27 4027.27 33753 4027.27 4027.27 2639870 2,5
53 115 3 6434,83 6455,54 2.7 6434.83 6434.83 12697 6434.83 6434.83 805719 5,0
54 172 4 10421,44 10421,44 12.3 10366.70 10389.39 8920 10309.09 10319.43 503818 10,0
55 56 3 10244,34 10247,86 3.2 10244.34 10244.34 38107 10244.34 10244.34 2573405 2,5
56 153 4 31231,62 31231,62 3.5 31237.04 31332.32 11776 30989.83 31093.75 1165444 10,0
57 163 4 44974,37 45071,82 13.3 45360.38 45463.21 9220 44840.48 45042.28 1196371 10,0
58 220 6 23537,74 23537,74 20.3 23485.38 23549.03 11667 23299.28 23339.36 756652 20,0
59 193 6 14326,01 14326,01 16.9 14254.91 14264.95 15839 14251.91 14286.26 926617 20,0
60 137 4 17090,08 17119,69 7.7 17074.77 17092.77 15621 17045.33 17052.85 894166 10,0
61 111 3 7295,67 7308,2 5.2 7289.74 7289.74 11320 7289.74 7289.74 1404786 5,0
62 225 5 23272,12 23272,12 6.6 22997.74 23033.39 10796 22872.40 22942.68 532771 20,0
63 174 5 20122,05 20325,31 14.9 20031.13 20107.15 7935 19890.65 19955.99 433335 10,0
64 161 3 17135,16 17135,16 9.3 17135.16 17144.87 11354 17135.16 17135.16 1383167 10,0
65 223 3 13072,08 13097,23 6.0 13015.86 13021.05 9832 12959.16 12986.44 760971 20,0
66 150 4 12924,55 12924,55 10.9 12849.22 12865.86 11601 12751.27 12779.40 596361 10,0
67 172 5 10976,12 10976,12 18.2 10872.97 10955.41 7941 10830.32 10875.86 533061 10,0
68 125 4 9122,76 9135,27 9.5 8946.45 8974.09 17097 8889.03 8901.75 1108449 10,0
69 152 4 9299,47 9299,47 9.9 9227.69 9255.97 9320 9140.67 9158.53 555911 10,0
70 78 4 6689,61 6689,61 2.0 6684.56 6684.83 30768 6684.56 6684.56 1174247 5,0
71 186 3 9912,71 9938,77 14.9 9953.37 9979.27 6502 9870.59 9953.06 584546 10,0
72 186 4 5956,27 5956,27 14.3 5922.99 5941.24 9890 5887.74 5896.20 599111 10,0
73 137 5 10251,80 10909,9 5.3 10212.96 10222.32 16177 10202.41 10218.20 1289814 10,0
74 125 5 11701,10 12197,85 5.2 11660.70 11684.56 21295 11602.83 11689.09 2105688 10,0
75 20 3 452,85 452,85 0.0 452.85 452.85 372685 452.85 452.85 5190946 2,5
76 152 8 12062,86 12062,86 11.1 12100.16 12132.36 11530 12038.38 12139.64 1525047 10,0
77 190 3 6930,61 7010,15 9.6 6956.42 6967.56 7921 6901.44 6942.63 402739 10,0
78 190 4 7077,81 7077,81 9.8 7041.95 7062.04 7499 7054.81 7082.00 507052 10,0
79 147 4 7278,10 7287,38 4.4 7257.97 7262.85 13979 7257.97 7257.97 1230373 10,0
80 171 3 6841,07 6841,07 13.9 6823.04 6830.37 9733 6819.07 6823.09 604402 10,0
81 106 4 10700,47 10719,66 2.4 10591.13 10607.45 27818 10591.77 10603.56 1482693 10,0
82 79 3 4772,94 4774,26 2.4 4742.28 4762.80 23754 4718.27 4734.58 1084908 5,0
83 124 4 10019,83 10019,83 5.1 10038.09 10046.68 19970 10019.15 10021.03 2041504 10,0
84 105 4 7262,81 7270,78 4.5 7229.48 7237.95 12592 7227.88 7227.88 761231 5,0
85 146 4 8893,92 8893,92 3.9 8800.29 8812.36 13733 8763.90 8780.96 1188393 10,0
86 153 5 9088,64 9094,77 9.0 9056.19 9071.31 14011 9031.60 9051.99 1450211 10,0
87 108 4 3753,87 3781,07 1.1 3753.87 3753.87 25572 3753.87 3753.87 2741016 10,0
88 127 5 12442,48 12568,64 17.4 12440.03 12474.03 17222 12413.25 12435.80 1683138 10,0
89 134 5 7143,51 7216,53 9.7 7132.71 7139.72 15537 7080.77 7096.09 870783 10,0
90 102 4 2359,42 2359,42 5.2 2282.77 2293.06 13729 2278.85 2287.20 770989 5,0
91 196 4 6441,06 6441,06 18.6 6468.59 6483.83 6681 6402.96 6414.11 986361 10,0
92 35 3 564,39 564,39 0.3 564.39 564.39 87105 564.39 564.39 4756449 2,5
93 39 6 1036,99 1036,99 0.5 1036.99 1036.99 45999 1036.99 1036.99 1643735 2,5
94 46 5 1378,25 1378,66 0.3 1378.25 1378.25 70996 1378.25 1378.25 2890279 2,5
95 183 2 6245,03 6251,59 8.8 6223.32 6229.75 9138 6173.10 6204.80 1013863 10,0
Average dev. to BKS (%) 0,54 -0.40 -0.23 -0,74 -0,51

the automotive industry. Instances p07 and p12 were created taking into account
the real data. We converted the distance matrix based on traffic distances to a
2D coordinates system in order to make it easier to be tested by other algorithms,
still retaining the real case characteristics. The remaining instances were created
considering clients and depots randomly located inside on a boundary box from
one of the real instances. The demand and frequency of each client were sampled
from probability distribution functions created considering the real clients’ data.
Each type of vehicle has the same capacity and speed obtained from the real case,
however, we added a noise for the fix and variable costs. The results are presented
in Table 4.14, that shows a similar behaviour to the one observed for the HVRP
instances. For the smaller instances, the UHGS heuristic provided better results,
whereas AVNR was better for the larger ones. The AVNR heuristics also provides
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Table 4.11: Results for the PVRP Instances.
Literature UHGS AVNR

Instance |U | |T | nts M r
k BKS VCGLR T(min) Best Average Itr Best Average Itr T(min)

p01 50 2 50 3 524.61 524.61 0.2 524.61 524.61 78321 524.61 524.61 4635321 2.5
p02 50 5 104 3 1322.87 1322.87 0.4 1322.87 1322.87 40568 1322.87 1322.87 2567826 5.0
p03 50 5 50 1 524.61 524.61 0.2 524.61 524.61 214867 524.61 524.61 6366362 2.5
p04 75 2 75 5 835.26 836.59 1.1 835.26 835.28 34243 835.26 835.26 2623777 2.5
p05 75 5 153 6 2024.96 2033.72 2.3 2024.96 2026.79 39121 2024.96 2025.58 1563915 10.0
p06 75 10 75 1 835.26 842.48 0.9 835.26 835.26 95302 835.26 835.26 3357352 2.5
p07 100 2 100 4 826.14 827.02 0.9 826.14 826.14 22030 826.14 826.14 2145096 5.0
p08 100 5 202 5 2022.47 2022.85 2.5 2022.47 2022.47 28958 2022.47 2024.07 1299626 10.0
p09 100 8 100 1 826.14 826.94 1.0 826.14 826.14 51587 826.14 826.14 2189370 5.0
p10 100 5 174 4 1593.43 1605.22 1.8 1593.43 1594.01 29974 1593.43 1593.43 1864869 10.0
p11 126 5 191 4 770.89 775.84 4.6 774.90 776.90 19255 774.57 775.87 967097 10.0
p12 163 5 185 3 1186.47 1195.29 5.3 1192.56 1194.41 16549 1188.13 1190.27 764149 10.0
p13 417 7 457 9 3462.73 3599.86 40.0 3711.93 3730.52 6397 3533.21 3550.01 652214 40.0
p14 20 4 40 2 954.81 954.81 0.1 954.81 954.81 215103 954.81 954.81 3408970 2.5
p15 38 4 72 2 1862.63 1862.63 0.2 1862.63 1862.63 79899 1862.63 1862.63 4405200 2.5
p16 56 4 104 2 2875.24 2875.24 0.3 2875.24 2875.24 33018 2875.24 2875.24 2587786 5.0
p17 40 4 80 4 1597.75 1597.75 0.3 1597.75 1597.75 34790 1597.75 1597.75 2271954 2.5
p18 76 4 144 4 3131.09 3131.09 0.9 3131.09 3131.09 35494 3131.09 3131.09 2784390 10.0
p19 112 4 208 4 4834.34 4834.50 2.3 4834.34 4834.34 19282 4834.34 4834.34 1882963 10.0
p20 184 4 336 4 8367.40 8367.40 4.0 8367.40 8367.40 24281 8367.40 8367.40 2327398 30.0
p21 60 4 120 6 2170.61 2170.61 0.9 2170.61 2170.61 29019 2170.61 2170.61 1745844 5.0
p22 114 4 216 6 4193.95 4194.23 4.3 4194.57 4194.57 21926 4193.95 4193.95 995952 10.0
p23 168 4 312 6 6420.71 6434.10 4.3 6420.71 6420.71 23386 6420.71 6420.71 2050897 20.0
p24 51 6 90 3 3687.46 3687.46 0.3 3687.46 3687.46 69100 3687.46 3687.46 2336271 2.5
p25 51 6 90 3 3777.15 3777.15 0.6 3777.15 3777.15 67305 3777.15 3777.15 2314061 2.5
p26 51 6 90 3 3795.32 3795.32 0.3 3795.32 3795.32 60633 3795.32 3795.32 2923755 2.5
p27 102 6 180 6 21833.87 21885.70 3.5 21880.16 21934.83 26124 21846.02 21852.31 970549 10.0
p28 102 6 180 6 22242.51 22272.60 4.7 22278.39 22352.22 25054 22252.20 22270.42 840591 10.0
p29 102 6 180 6 22543.76 22564.05 3.9 22575.09 22599.19 25780 22544.63 22549.22 763353 10.0
p30 153 6 270 9 73875.19 74534.38 10.0 74681.38 75086.14 23146 74134.98 74288.52 705313 20.0
p31 153 6 270 9 75957.62 76686.65 10.0 76562.84 76940.29 22805 76317.02 76528.28 940853 20.0
p32 153 6 270 9 77591.23 78168.82 10.0 78284.84 78562.04 21533 77880.03 78055.32 894567 20.0
pr01 48 4 96 2 2209.02 2209.02 0.3 2209.02 2209.02 38669 2209.02 2209.02 2410228 5.0
pr02 96 4 192 4 3767.50 3768.86 2.5 3767.54 3769.89 19607 3767.50 3767.95 1384054 10.0
pr03 144 4 288 6 5153.54 5174.80 7.3 5161.36 5172.33 18689 5155.55 5161.00 1527242 20.0
pr04 192 4 384 8 5877.37 5936.16 10.0 5941.93 5964.67 15731 5902.41 5907.77 1243022 30.0
pr05 240 4 480 10 6581.86 6651.76 20.0 6786.45 6807.53 10313 6605.47 6619.77 669514 40.0
pr06 288 4 576 12 8207.21 8284.94 20.0 8454.67 8472.92 7367 8294.95 8302.48 491121 50.0
pr07 72 6 216 3 4996.14 4996.14 1.5 4996.14 4996.14 22182 4996.14 4996.14 1549396 10.0
pr08 144 6 432 6 6970.68 7035.52 10.0 7041.54 7065.51 20156 6982.77 6998.36 1798871 30.0
pr09 216 6 648 9 10038.43 10162.22 20.0 10199.84 10248.24 12426 10072.34 10091.35 776847 50.0
pr10 288 6 864 12 12897.01 13091.00 20.0 13508.17 13551.68 3841 13069.35 13160.66 339528 60.0
Average dev. to BKS (%) 0.43 0.63 0.76 0.18 0.26

a better average deviation.
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Table 4.12: Results for the MDVRP instances.
Literature UHGS AVNR

Instance |U | |D| M r
k BKS CB T(min) Best Average Itr Best Average Itr T(min)

p01 50 4 4 576.87* 576.87 1.32 576.87 576.87 44364 576.87 576.87 1113981 2.5
p02 50 4 2 473.53* 473.53 1.22 473.53 473.53 53867 473.53 473.53 3634227 2.5
p03 75 5 3 641.19* 641.19 2.54 641.19 641.19 48201 641.19 641.19 2726451 5.0
p04 100 2 8 1001.04* 1001.16 3.28 1001.04 1001.04 26053 1001.04 1001.04 1409898 5.0
p05 100 2 5 750.03* 750.19 4.72 750.03 750.03 23124 750.03 750.03 2139013 5.0
p06 100 3 6 876.50* 876.50 3.70 876.50 876.50 27118 876.50 876.50 1739615 5.0
p07 100 4 4 881.97* 881.97 3.52 881.97 881.97 25414 881.97 881.97 1679389 5.0
p08 249 2 14 4372.78 4381.91 18.90 4393.03 4407.91 12622 4391.77 4401.60 722953 20.0
p09 249 3 12 3858.66 3870.47 22.39 3859.17 3860.16 18143 3858.66 3860.05 710329 20.0
p10 249 4 8 3631.11 3647.09 21.35 3631.11 3632.44 15545 3631.11 3632.41 953085 20.0
p11 249 5 6 3546.06 3547.45 23.55 3546.06 3546.06 15909 3546.06 3546.06 962796 20.0
p12 80 2 5 1318.95* 1318.95 3.17 1318.95 1318.95 32548 1318.95 1318.95 2376841 2.5
p13 80 2 5 1318.95* 1318.95 3.22 1318.95 1318.95 28504 1318.95 1318.95 2544222 2.5
p14 80 2 5 1360.12* 1360.12 3.25 1360.12 1360.12 44468 1360.12 1360.12 2902776 2.5
p15 160 4 5 2505.42* 2505.42 9.99 2505.42 2505.42 25184 2505.42 2505.42 1521832 10.0
p16 160 4 5 2572.23* 2572.23 12.28 2572.23 2572.23 19664 2572.23 2572.23 1848810 10.0
p17 160 4 5 2709.09* 2709.09 12.36 2709.09 2709.09 19468 2709.09 2709.09 1710508 10.0
p18 240 6 5 3702.85* 3702.85 20.39 3702.85 3702.85 17557 3702.85 3702.85 1416076 20.0
p19 240 6 5 3827.06* 3827.06 28.67 3827.06 3827.06 13658 3827.06 3827.06 1927319 20.0
p20 240 6 5 4058.07* 4058.07 31.93 4058.07 4058.07 14071 4058.07 4058.07 1385869 20.0
p21 360 9 5 5474.84* 5476.61 41.26 5474.84 5474.84 11404 5474.84 5474.84 772016 30.0
p22 360 9 5 5702.16 5703.70 65.34 5702.16 5702.16 11852 5702.16 5702.16 645603 30.0
p23 360 9 5 6078.75 6078.75 72.99 6078.75 6078.75 8584 6078.75 6078.75 609879 30.0
pr01 48 4 1 861.32* 861.32 1.55 861.32 861.32 35778 861.32 861.32 1903972 2.5
pr02 96 4 2 1307.34 1307.34 4.68 1307.34 1307.34 13338 1307.34 1307.34 1476249 5.0
pr03 144 4 3 1803.80* 1803.80 10.02 1803.80 1803.80 13651 1803.80 1803.80 1966449 10.0
pr04 192 4 4 2058.31 2058.76 15.82 2058.31 2058.31 9668 2058.31 2058.31 477441 10.0
pr05 240 4 5 2331.20 2338.19 21.56 2341.62 2346.54 8718 2331.20 2332.39 536322 20.0
pr06 288 4 6 2676.30 2686.77 31.61 2681.78 2690.07 7011 2676.30 2679.24 363737 20.0
pr07 72 6 1 1089.56* 1089.56 2.83 1089.56 1089.56 26286 1089.56 1089.56 2149324 5.0
pr08 144 6 2 1664.85* 1666.55 8.15 1664.85 1664.85 17668 1664.85 1664.85 2047432 10.0
pr09 216 6 3 2133.20 2135.05 18.10 2133.20 2133.24 14369 2133.20 2133.20 1277676 20.0
pr10 288 6 4 2867.46 2873.80 28.91 2896.41 2906.99 5587 2868.26 2877.54 355598 20.0
Average dev. to BKS (%) 0.07 0.06 0.10 0.01 0.04

Table 4.13: Results for the SDMTPVRP instances.
Literature UHGS AVNR

Instance |U | |T | nts |K| BKS AAB T(min) Best Average Itr Best Average Itr T(min)
p01 50 2 64 2 2690.41 2695.96 0.78 2690.41 2690.41 32670 2690.41 2690.41 3006371 2.5
p02 75 4 140 2 6245.17 6245.17 1.35 6120.99 6159.15 37507 6139.78 6146.51 1923035 10
p03 100 4 200 3 7208.69 7305.18 1.69 7079.96 7113.85 16799 7049.27 7067.72 1446278 10
p04 150 4 290 4 12499.03 12774.28 2.23 12428.56 12488.27 16377 12216.64 12285.23 1390540 20
p05 200 4 400 5 15116.86 15589.62 3.44 15094.85 15219.74 16313 14692.25 14744.47 1208380 40
p06 288 5 648 6 20437.29 20658.37 8.27 20494.48 20629.18 10873 19810.44 19915.31 1197720 60
p07 350 5 810 8 32592.80 33126.81 8.43 32820.43 33019.79 6579 31547.90 31676.61 589503 60
p08 500 5 1050 10 101418.52 102329.36 8.15 103498.11 103817.16 3356 98351.12 98734.27 431832 60
p09 750 6 1750 13 130635.46 131334.72 12.9 132552.19 133206.74 2030 129220.84 129593.30 103591 60
p10 1000 6 2100 13 118703.09 121479.08 19.74 122165.79 122704.66 460 117621.84 119828.83 35470 60
Average dev. to BKS (%) 1.34 0.29 0.79 -2.00 -1.56

Table 4.14: Results for the HSDMDMTPVRP instances.
UHGS AVNR

Instance |U | |T | nts |D| |K| Best Average Iterations Best Average Iterations T(min)
p01 60 2 87 2 5 4870.18 4876.71 31221 4869.78 4925.71 1895771 5.0
p02 80 3 163 2 5 9110.49 9113.96 23604 9110.49 9234.90 1569455 10.0
p03 120 2 173 2 5 7891.10 7975.54 17420 7875.00 8064.63 1355003 10.0
p04 80 4 210 2 5 13519.97 13558.22 37379 13560.13 13632.79 2461616 20.0
p05 99 3 200 3 5 9815.36 9849.66 35634 9940.17 9975.78 2367039 20.0
p06 75 5 225 2 5 12428.14 12452.22 42876 12514.54 12612.70 2542886 20.0
p07 95 5 218 2 5 9573.01 9636.16 19650 9297.00 9436.59 1302913 20.0
p08 160 2 241 2 5 13911.14 13972.04 16192 13674.72 13800.89 1385730 20.0
p09 150 3 282 2 5 14440.06 14544.85 16524 14263.66 14374.81 1269747 20.0
p10 140 4 326 2 5 20512.50 20651.22 18593 20154.65 20263.02 1615274 30.0
p11 250 2 370 3 5 16934.79 16988.92 8842 16624.89 16765.58 748821 30.0
p12 198 5 370 3 5 20764.34 21037.60 9497 20174.23 20446.11 728591 30.0
p13 201 3 395 2 5 17931.25 17997.60 15069 17656.56 17792.77 1308254 40.0
p14 200 4 489 3 5 28016.34 28181.26 13294 27401.06 27835.35 1193506 50.0
p15 270 4 668 4 5 26532.58 26703.89 9638 26161.49 26458.54 968488 60.0
p16 293 6 957 4 5 41705.84 41970.52 5686 40797.98 41479.48 520365 60.0
Average dev. to BKS (%) 1.26 1.79 0.14 1.25
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4.5 Final remarks of the chapter

In this chapter, given a real world demand, we designed two metaheuristics to solve
the Heterogeneous Site-Dependent Multi-Depot Multi-Trip Periodic Vehicle Routing
Problem (HSDMDMTPVRP), which is a combination of multiple well-known vehicle
routing problem variants.

The first proposed metaheuristic is an adaptation of the well performing VRP
metaheuristic called Unified Hybrid Genetic Search (UHGS) [16]. The second meta-
heuristic is completely new, shares many search mechanisms with UHGS, and we
named it Adaptive Variable Neighborhood Race (AVNR). The results presented in
Section 4.4 reveal that both UHGS and AVNR present good results, outperform-
ing several approaches proposed in the literature for the VRP variants. In special,
AVNR provided an overall advantage.
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Chapter 5

Conclusions, achievements and
future works

This work solved three logistics transportation optimization problems: the Traffic
Counting Location Problem (TCLP), the Periodic Supply Vessel Planning Problem
with Berth-Allocation (PSVPP-BA) and the Heterogeneous Site-Dependent Multi-
Depot Multi-Trip Periodic Vehicle Routing Problem (HSDMDMTPVRP).

We proposed a progressive hybrid algorithm based on set covering to solve the
TCLP. Greedy, exact and hybrid methods, based on a simple and innovative concept
which has not yet been explored in the literature, were developed embedded in a
set covering framework to solve 26 real-world instances obtained from the Brazilian
states. Our algorithm found better results than the clustering search of GONZÁLEZ
et al. [1], providing best-known solutions for the hardest instances MG, MT and SP.
Regarding the exact methods, the branch-and-cut algorithm of GONZÁLEZ et al.
[1] solved only four instances to optimality, whereas we were able to find 20 optimal
solutions with lower CPU times. Besides, two new optimal solutions were found
after evaluation of the results.

We have presented an exact branch-and-cut method and an adaptive large neigh-
borhood search (ALNS) heuristic with multiple starts and spaced local searches to
solve the periodic supply vessel planning problem (PSVPP) arising in the upstream
offshore petroleum logistics chain. The PSVPP tackled in this work consists of a
periodic vehicle routing problem while simultaneously determining the optimal fleet
size and a mix of heterogeneous offshore supply vessels, their one week routes and
schedules for servicing the offshore oil and gas installations, besides the berth allo-
cations at the supply base. We have extended the previous works of HALVORSEN-
WEARE and FAGERHOLT [12], KISIALIOU et al. [11] and CRUZ et al. [2] since
we used a replicable one-week planning horizon both for the offshore units and the
vessels. We solved the largest available real-world instances, without dividing them
into clusters, and we achieved good solutions relatively fast, performing significantly
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better than the branch-and-cut algorithm.
Finally, given a real world demand, we designed two metaheuristics to solve

a Heterogeneous Site-Dependent Multi-Depot Multi-Trip Periodic Vehicle Routing
Problem (HSDMDMTPVRP), that is a combination of multiple well-known Vehi-
cle Routing Problem (VRP) variants. The first metaheuristic is an adaptation of
the Unified Hybrid Genetic Search (UHGS) proposed by VIDAL et al. [16] which
provides good results for the VRP variants. Based on that, we propose the Adap-
tive Variable Neighborhood Race (AVNR) metaheuristic, which shares many search
mechanisms with our adaptation for the UGHS. AVNR has provided good results
even for those VRP variants well-explored in the literature.

Achievements

Concerning the PSVPP-BA, during my PhD Visit at the Interuniversity Research
Centre on Enterprise Networks, Logistics and Transportation (CIRRELT), under
the supervision of Prof. Gilbert Laporte, we published a scientific paper at the
European Journal of Operations Research (EJOR) [39].

We won a conference prize of “ANPET Prize of Scientific Production 2017” for the
paper called “A multi-objective assessment of emergency care based on population,
number of occurrences and distance traveled by rescue vehicles” [97].

Regarding the TCLP, we won a conference prize of “ANPET Prize of Scientific
Production 2019” and published a scientific article at the journal Expert Systems
with Applications (ESWA) [18].

For the HSDMDMTPVRP, a scientific paper is under production for submission
to a high quality journal.

Future works

Regarding the TCPL, we suggest to solve the case that uses partial coverage to
maximize the total number of O-D pairs covered, when considering a pre-established
budget for the sensors. New heuristics and metaheuristics could be proposed to
generate Pareto curves to analyze the trade-off between maximizing the coverage of
the traffic network and minimizing the cost of installing the sensors.

The PSVPP’s algorithms can also be adapted to other PSVPP variations, tested
on more real-world instances, and can be modified to tackle variations which include
weather conditions or other uncertainties like delayed services.

For the HSDMDMTPVRP, we can adapt the AVNR to other routing or optimiza-
tion problems in general. It also can be easily adapted to run on multiple threads or
multiple nodes in clusters, like the work of CORDEAU and MAISCHBERGER [86],
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since each solution search per step is independent, only requiring a single thread
between steps.
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Appendix A

Detailed parameters tuning for the
ALNS’ PSVPP-BA

According to Section 3.5.2, this appendix presents all details about the tuning phase.
So, Tables A.1 to A.7 show the average percentage deviation (Dev (%)) of the
solution values from the initial set of parameters caused by the variation of these
parameters.

A.1 Impact of each operator

In order to validate the performance of each operator, Table A.1 presents the tun-
ing results for the ALNS without each one of its heuristics. Between the removal
heuristics, the ones with higher impact was the Shaw frequency removal (RO3) and
Worst removal (RO5) operators and looking to the insertion operators, the ones
with higher impact was the Deep greedy insertion (IO1) and Greed insertion (IO2)
operators. As the removal of any operator implies a lower algorithmic performance,
all proposed operators were kept.

Table A.1: Average percentage solution deviation without each operator compared
with no operator removed (Base).

Operator RO1 RO2 RO3 RO4 RO5 IO1 IO2 IO3 Base
Dev (%) 0.70 0.79 1.74 0.53 1.86 3.10 2.84 1.33 0.00

A.2 Single tested set of parameters

Table A.2 presents the tuning results for the single tested ALNS’ parameters segment
size ρ, removal level of determinism p, local search interval δ, reaction factor τA and
adaptive scores (σ1, σ2, σ3). The segment size parameter ρ controls the frequency
of updates of the adaptive weights and the penalty weight. It was tested for the
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values 25, 50, 100, 200 and 300, and the best result was reached at the initial value
ρ = 50. The removal level of the determinism parameter p was tested in a range
from totally random p = 1 to extremely deterministic p = 10, passing through the
values p = 2, p = 4 and p = 6. The worst results were observed at both extremes
p = 1 and p = 10, and the best result was achieved with the initial value p = 4. The
local search interval parameter δ was tested for the values 10, 25, 50, 200 and 500.
The best result was reached at the initial value δ = 50, and both the most spaced
and least spaced search intervals had a negative impact at the end of the ALNS
search. In addition to the average percentage deviation on the objective function
caused by the variation of δ, Table A.2 shows the average CPU times in seconds,
spent in the computation considering each of its tested values. Taking into account
the behavior of the CPU times, it is expected that more frequent executions of local
searches (what is computationally expensive) will increase the total search time, but
this was not the case. This behavior is justified by the fact that we have applied the
local search to the most promising solution instead of the current one. We tested
the impact of having no local searches as well (δ =∞) and we obtained in average
percentage solution deviation of 4.215% within approximately the same CPU time.

Table A.2: Average percentage solution deviation with varying ρ, p, τA and δ.
ρ

Values 25 50 100 200 300
Dev (%) 2.39 0.000 2.42 2.55 3.15

p
Values 1 2 4 6 10
Dev (%) 1.05 0.93 0.000 2.45 2.87

δ
Values 10 25 50 200 500
Dev (%) 2.51 0.96 0.000 2.08 3.38
CPU(s) 51.1 46.7 47.5 48.0 49.2

τA
Values 0.01 0.05 0.10 0.20 0.30
Dev (%) 0.284 -0.131 0.000 0.261 0.142

(σ1, σ2, σ3)
Values (0,10,5) (10,0,5) (10,5,0) (5,0,10) (0,5,10)
Dev (%) 0.384 0.415 0.000 -0.195 0.541

The adaptive parameters have a marginal overall impact. The reaction factor
parameter τA was tested for the values 0.01, 0.05, 0.10, 0.20 and 0.30, and the best
performance was obtained for τA = 0.05. The adaptive scores (σ1, σ2, σ3) were
tested for the values (0, 10, 5), (10, 0, 5), (10, 5, 0), (5, 0, 10) and (0, 5, 10), and the
best performance was achieved for (5, 0, 10), which may not be in accordance with
the initial proposition of [57], but is in line with the recent works of [62] and [11].

A.3 Feasibility weights updating

Table A.3 presents the tuning results for the pair of parameters (τ−, τ+). The
infeasible update weight τ− was tested for the values 1.05, 1.10, 1.15 and 1.25, while
the feasible update weight τ+ was tested for the values 0.60, 0.75, 0.90, and 1.00.
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The best result was achieved for the pair of initial values (τ− = 1.15, τ+ = 0.90). It is
interesting to emphasize that the last column τ+ = 1.00 exhibits the worst results for
all tested τ− values. This means that once the best solution is feasible, the penalty
weights do not decrease, discouraging the exploration of infeasible solutions.

Table A.3: Average solution deviation (%) with varying feasibility weights update
values.

τ− \ τ+ 0.60 0.75 0.90 1.00
1.05 1.39 0.49 0.17 2.93
1.10 1.16 0.66 0.07 2.90
1.15 1.27 0.07 0.00 2.07
1.25 1.50 1.40 0.27 2.88

A.4 Removal range

Table A.4 presents the tuning results for the pair of parameters (n−1 , n
−
2 ). Besides

the average percentage deviation of the solution values caused by the variation of
these parameters, Table A.4 shows the average CPU times spent in the computation,
considering each pair of values. The lower removal rate n−1 was tested for the values
0.05, 0.10, 0.15 and 0.20, while the upper removal rate n−2 was tested for the values
0.20, 0.25, 0.30, and 0.40. The best result was achieved for the values n−1 = 0.10

and n−2 = 0.25. The average CPU times behaved as expected since a larger number
of removals and insertions per iteration implied higher CPU times.

Table A.4: Average solution deviation (%) and CPU time, in seconds, with varying
removal range.

Dev (%) CPU(s) Dev (%) CPU(s) Dev (%) CPU(s) Dev (%) CPU(s)
n−1 \ n−2 0.20 0.25 0.30 0.40
0.05 0.99 32.4 0.01 36.7 0.27 41.7 0.37 52.8
0.10 -0.12 36.7 -0.55 41.5 0.00 46.7 0.43 57.7
0.15 0.53 41.8 0.24 46.7 1.03 51.9 -0.03 62.3
0.20 0.34 48.0 -0.13 52.4 0.30 57.5 0.51 68.0

A.5 Temperature range

Table A.5 presents the tuning results for the pair of parameters (θ′0, θ
′
F ) with the

average CPU times, spent in the computation considering each pair of values. The
initial relative temperature θ ′0 was tested for the values 1, 1/3, 1/10 and 1/50,
while the final relative temperature θ ′F was tested for the values 1/50, 1/100, 1/300,
and 1/500. The best result was achieved for the pair of values (θ ′0 = 1/50, θ ′F =

1/500), with an improvement of 1.68% in comparison to baseline tests. This pair
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of parameters does not have a major impact on the quality of the solutions, but
the CPU times grow from the lower right corner (lower temperature values) to the
upper right corner (higher temperature values).

Table A.5: Average solution deviation (%) and CPU time, in seconds, with varying
temperature range.

Dev (%) CPU(s) Dev (%) CPU(s) Dev (%) CPU(s) Dev (%) CPU(s)
θ′0 \ θ′F 1/50 1/100 1/300 1/500

1 1.02 48.9 1.39 47.9 0.14 47.2 0.03 47.4
1/3 1.05 48.5 1.41 47.8 0.00 46.7 -0.26 46.3
1/10 0.30 47.3 0.43 46.9 -0.01 45.4 -0.76 45.2
1/50 0.73 45.5 -0.41 44.6 0.43 44.2 -1.68 43.6

A.6 Multi-start performance

Tables A.6 and A.7 present the average percentage deviation of the solution values
related to the best average solution found for all tested combination of α, β and γ.
Starting with Table A.6 we relate the number of starts α and the number of iterations
per start β, while keeping the total number of iterations fixed at γ = 150, 000. The
parameter α was tested for the values 1, 15, 35, 50, 75 and 100, and β was tested
for the values 100, 300, 500, and 1, 000. According to the results of Table A.6, line
α = 1, i.e. “no-multi-start”, yielded the worst results for all values of β, and no other
value of α consistently presented better solutions. In addition, discarding the line
α = 1, columns β = 500 and β = 1, 000 consistently presented the worst results with
the increase of α. Finally, column β = 100 achieved the best results for all values of
α, without, however, showing consistency with the increasing or decreasing of α.

Table A.6: Average solution deviation (%) with γ = 150, 000 and varying α and β.
α \ β 100 300 500 1000
1 2.73 1.66 2.14 1.61
15 1.65 0.36 0.91 2.58
35 0.86 0.77 1.31 1.55
50 0.52 0.55 1.30 1.94
75 0.79 1.09 1.10 -
100 0.95 1.01 1.82 -

Based on the results of Table A.6, the number of iterations per start was fixed
at β = 100, and new tests were performed varying the parameters α (number of
starts) and γ (total number of iterations). The parameter α was tested for the same
values as in Table A.6, and γ was tested for the values 15, 000, 50, 000, 150, 000,
and 300, 000. According to the results of Table A.7, the best results are achieved
for γ = 300, 000, as the total number of iterations γ increases and once again line
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α = 1 yielded the worst results for all γ values. Finally, Table A.7 shows that the
best result was reached for α = 50 β = 100 and γ = 300, 000.

Table A.7: Average solution deviation (%) and CPU time, in seconds, with β = 100
and varying α and γ.

α \ γ 15,000 50,000 150,000 300,000
1 6.75 3.23 1.43 2.37
15 5.39 3.76 1.65 0.26
35 6.92 2.38 0.86 0.47
50 7.19 1.68 0.52 0.00
75 7.47 3.20 0.79 0.38
100 7.93 2.68 1.65 0.43

CPU(s) 10.2 33.6 99.4 201.3
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Appendix B

Detailed mechanisms impacts for the
AVNR heuristic

According to Section 4.4.1, this appendix details the performance impacts of the
removal of each individual mechanism or operator to ensure that they performing
as designed after the parameters tuning for the second set of tuning instances.

Table B.1 shows the average percentage deviation (Dev (%)) of the solution
values from the final set of parameters caused by the variation of these parameters
for each mechanism or operator removed from the search for 10 runs on each instance.

The following mechanisms were removed by: adaptive means αA = 0, diversity
means εElite0 = εEliteF = 1, population means µbase0 = µbaseF = nsteps = 1, repair means
that Lines 16 and 19 from Algorithm 15 were removed, and local search means that
Lines 8−10 from Algorithm 15 were removed, and operator i means that the initial
weigh for such operator was set as zero (φi = 0).

Looking at the results shown in Table B.1, we can observe that removing any
mechanism or operator results in a worst performance for the HSDMDMTPVRP,
and that little average improvements in a few cases (negative values) are always
marginal (less than 0.09%). So, the mechanisms with the higher impact if removed
were Diversity, Population, Repair and Local Search.

Table B.1: Percentile impact of the removal of each search mechanism or operator.
Instance Type

Removed Mechanism CVRP SDVRP PVRP HVRP MTVRP MDVRP SDMTPVRP HSDMDMTPVRP Average
Adaptativeness 0.10 0.03 0.19 0.14 0.12 0.10 0.17 0.45 0.16
Diversity 0.02 0.63 0.27 0.74 0.50 0.33 1.43 1.63 0.69
Population 1.45 1.56 1.12 1.25 5.46 1.88 4.64 2.91 2.53
Repair 0.36 0.87 0.45 0.29 2.35 -0.09 1.48 1.99 0.96
Local Search 0.57 0.23 0.42 -0.03 0.98 0.01 1.49 1.35 0.63
Oscilatinng Penalty Weghts 0.07 0.30 0.17 0.01 0.27 0.03 1.07 1.50 0.43
Shaw removal (RO1) -0.01 0.19 -0.03 0.01 0.35 -0.01 0.03 1.27 0.23
Shaw neighbours removal (RO2) 0.06 0.24 0.02 0.29 0.64 0.06 0.10 2.07 0.44
Shaw load removal (RO3) -0.08 0.32 0.12 0.19 0.42 0.04 0.10 1.55 0.33
ACUT removal (RO4) -0.02 0.25 0.05 0.01 0.34 0.01 0.07 0.97 0.21
Worst Removal (RO5) 0.04 0.03 0.11 0.01 0.44 0.16 0.17 2.24 0.40
Random removal (RO6) 0.05 0.35 0.13 0.09 0.47 0.04 -0.08 1.80 0.36
Random Greedy insertion (IO1) 0.18 0.11 0.04 -0.07 0.36 -0.03 0.12 0.05 0.09
Partial greedy insertion (IO2) 0.14 0.13 -0.01 0.03 0.39 0.12 0.09 0.16 0.13
Partial k-regret insertion (IO3) 0.26 -0.02 0.10 0.23 0.37 0.09 -0.05 0.25 0.15
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